98%
921
2 minutes
20
The transcription factor PsrA regulates fatty acid metabolism, the type III secretion system, and quinolone signaling quorum sensing system in . To explore additional roles of PsrA in , this study engineered a PAO1 strain to carry a recombinant plasmid with the gene (pMMB) and examined the impact of elevated expression to the bacterium. Transcriptomic analysis revealed that PsrA significantly downregulated genes encoding the master quorum-sensing regulators, RhlR and LasR, and influenced many quorum-sensing-associated genes. The role of PsrA in quorum sensing was further corroborated by testing autoinducer synthesis in PAO1 [pMMB] using two reporter bacteria strains CV026 and [pSB1075], which respond to short- and long-chain acyl homoserine lactones, respectively. Phenotypic comparisons of isogenic Δ, Δ, and ΔΔ mutants revealed that the reduced elastase, caseinase, and swarming activity in PAO1 [pMMB] were likely mediated through LasR. Additionally, electrophoretic mobility shift assays demonstrated that recombinant PsrA could bind to the promoter at a 5'-AAACGTTTGCTT-3' sequence, which displays moderate similarity to the previously reported consensus PsrA binding motif. Furthermore, the PsrA effector molecule oleic acid inhibited PsrA binding to the promoter and restored several quorum sensing-related phenotypes to wild-type levels. These findings suggest that PsrA regulates certain quorum-sensing phenotypes by negatively regulating expression, with oleic acid acting as a crucial signaling molecule.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233452 | PMC |
http://dx.doi.org/10.3389/fmicb.2024.1424330 | DOI Listing |
Genes Genet Syst
September 2025
Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University.
In most eubacteria the initiator protein DnaA triggers chromosomal replication by forming an initiation complex at the origin of replication and also functions as a transcriptional regulator, coordinating gene expression with cell cycle progression. While DnaA-regulated genes are relatively well characterized in exponentially growing cells, its role in gene regulation during stationary phase remains insufficiently explored. Here, using an aquatic bacterium Caulobacter crescentus as a model, we show that C.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Lanzhou Eco-Agriculture Experimental Research Station, Lanzhou 730000, China; Key Laboratory of Stress Physio
Microplastics are pervasive soil pollutants, yet their role in driving microbial risk in medicinal plant rhizospheres remains poorly understood. Using polyethylene microplastics (PE-MPs) as a model, this study investigated the dose-dependent effects of PE-MPs (0-1000 mg/kg) on the dynamics of antibiotic resistance genes (ARGs), biocide/metal resistance genes (BMRGs), virulence factor genes (VFGs), mobile genetic elements (MGEs), and human bacterial pathogens (HBPs) in the rhizosphere of Angelica sinensis. Results showed that PE-MPs exposure increased the abundance of these genes and pathogens while simplifying the host microbial community structure.
View Article and Find Full Text PDFBiophys Chem
September 2025
Research and Development Cell (RDC), Parul University, Waghodia, Vadodara, Gujarat 391760, India; Department of Computer Science and Bioscience, Faculty of Engineering and Technology, Marwadi University, Rajkot 360003, Gujarat, India. Electronic address:
Silver nanoparticles (AgNPs) synthesized through green chemistry approaches offer a sustainable alternative to conventional methods, with potential applications in various biological fields. In this study, we report the synthesis of AgNPs using terpenoids derived from Ipomoea hederifolia L. (Convolvulaceae).
View Article and Find Full Text PDFmBio
September 2025
Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.
Quorum sensing (QS) is a widespread signaling mechanism in bacteria that coordinates collective behaviors according to population density. A foundational assumption in this field is that QS functions as a gene expression switch that synchronizes responses at the population level. While some studies indeed report homogeneous on/off transitions, others report heterogeneity at the cellular level, challenging the canonical view.
View Article and Find Full Text PDFMed Int (Lond)
August 2025
Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China.
Punicalagin, a polyphenolic compound extracted from pomegranate peel, has received increasing attention in recent years due to its antibacterial and antiviral properties. Punicalagin is capable of inhibiting bacterial growth at sub-inhibitory concentrations by affecting cell membrane formation, disrupting membrane integrity, altering cell permeability, affecting efflux pumps, interfering with quorum sensing and influencing virulence factors. Additionally, punicalagin inhibits viruses by modulating enzyme activity, interacting with viral surface proteins, affecting gene expression, blocking viral attachment, disrupting virus receptor interaction and inhibiting viral replication.
View Article and Find Full Text PDF