Sustainable synthesis and functional profiling of Ipomoea hederifolia-derived terpenoids-assisted silver nanoparticles: Mechanistic insights into anticancer, antioxidant, antibiofilm, and anti-quorum sensing activities.

Biophys Chem

Research and Development Cell (RDC), Parul University, Waghodia, Vadodara, Gujarat 391760, India; Department of Computer Science and Bioscience, Faculty of Engineering and Technology, Marwadi University, Rajkot 360003, Gujarat, India. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Silver nanoparticles (AgNPs) synthesized through green chemistry approaches offer a sustainable alternative to conventional methods, with potential applications in various biological fields. In this study, we report the synthesis of AgNPs using terpenoids derived from Ipomoea hederifolia L. (Convolvulaceae). The AgNPs (AgNPs-T) were characterized using UV-Vis spectroscopy, which revealed a surface plasmon resonance (SPR) peak at 452 nm, confirming successful synthesis. Fourier-transform infrared spectroscopy (FTIR) analysis identified functional groups such as hydroxyl and carbonyl that facilitated the reduction of silver ions and acted as stabilizing agents. Transmission electron microscopy (TEM) showed that the AgNPs-T were spherical in shape, with sizes ranging from 4 to 20 nm, and were well-dispersed due to the presence of capping agents from the plant extract. The biological activities of AgNPs-T were evaluated, showcasing potent antibacterial activity against several human pathogenic bacteria. Additionally, AgNPs-T exhibited significant antibiofilm and anti-quorum sensing activities, disrupting biofilm formation and inhibiting bacterial communication. The nanoparticles also demonstrated strong antioxidant properties by scavenging DPPH radicals in a dose-dependent manner. Moreover, cytotoxicity studies using the MTT assay revealed that AgNPs-T exerted dose-dependent anticancer effects against breast cancer (MCF-7) cells. These findings suggest that Ipomoea hederifolia-derived AgNPs possess multifunctional biological activities, making them promising candidates for applications in antimicrobial, antioxidant, and anticancer therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2025.107524DOI Listing

Publication Analysis

Top Keywords

ipomoea hederifolia-derived
8
silver nanoparticles
8
antibiofilm anti-quorum
8
anti-quorum sensing
8
sensing activities
8
biological activities
8
agnps-t
5
sustainable synthesis
4
synthesis functional
4
functional profiling
4

Similar Publications

Sustainable synthesis and functional profiling of Ipomoea hederifolia-derived terpenoids-assisted silver nanoparticles: Mechanistic insights into anticancer, antioxidant, antibiofilm, and anti-quorum sensing activities.

Biophys Chem

September 2025

Research and Development Cell (RDC), Parul University, Waghodia, Vadodara, Gujarat 391760, India; Department of Computer Science and Bioscience, Faculty of Engineering and Technology, Marwadi University, Rajkot 360003, Gujarat, India. Electronic address:

Silver nanoparticles (AgNPs) synthesized through green chemistry approaches offer a sustainable alternative to conventional methods, with potential applications in various biological fields. In this study, we report the synthesis of AgNPs using terpenoids derived from Ipomoea hederifolia L. (Convolvulaceae).

View Article and Find Full Text PDF