98%
921
2 minutes
20
Associations between brain structure and body mass index (BMI) are increasingly gaining attention. Although BMI-related regional alterations in brain morphology have been previously reported, the effect of BMI on the microstructural profiles, which provide information on the proxy of neuronal density within the cortex, is unexplored. In this study, we investigated the links between cortical layer-specific microstructural profiles and BMI in 302 neurologically healthy young adults. Using the microstructure-sensitive proxy based on the T1-and T2-weighted ratio, we estimated microstructural profile covariance (MPC) by calculating linear correlations of cortical depth-wise intensity profiles between different brain regions. Then, low-dimensional gradients of the MPC matrix were estimated using dimensionality reduction techniques, and the gradients were associated with BMI. Significant effects in the heteromodal association areas were observed. The BMI-gradient association map was related to the geodesic distance along the cortical surface, curvature, and sulcal depth, suggesting that the microstructural alterations occurred along the cortical topology. The BMI-gradient association map was further linked to cognitive states related to negative emotions. Our findings may provide insights into understanding the atypical cortical microstructure associated with BMI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11231607 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e33134 | DOI Listing |
Brain Res Bull
September 2025
Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, 230601, He Fei, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, 230032, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, 230032, Hefei,
Background: The relationships between white matter microstructure, cortical atrophy, and cognitive function in cerebral small vessel disease (CSVD)-related white matter hyperintensities (WMHs) patients are unclear.
Methods: 71 right-handed WMHs patients (mild, n=23; moderate, n=27; severe, n=21) and 35 healthy controls were included. Tract-based spatial statistics (TBSS) assessed microstructure via fractional anisotropy (FA) and mean diffusivity (MD).
Bone
September 2025
Department of Mechanical Engineering, Texas A&M University, 3123 TAMU, College Station, TX, 77843, United States of America; School of Engineering Medicine, Texas A&M University, 1020 Holcombe Blvd, Houston, TX 77030, United States of America. Electronic address:
Breast, prostate and lung cancer cells frequently metastasize to bone, leading to disruption of the bone microstructure. This study utilized mechanical testing with micro-CT imaging, digital volume correlation (DVC), and atomic force microscopy (AFM) nanomechanical testing to examine the mechanical property variations in mouse long bones (tibia) with metastatic lung cancer cell involvement, spanning from the whole-bone scale to the microstructural level. In addition, we also investigated how metastatic invasion alters the morphology of hydroxyapatite nanocrystals in bone at the nanometer scale.
View Article and Find Full Text PDFMov Disord
September 2025
Movement Investigation and Therapeutics Team, Sorbonne Université, INSERM U1127, CNRS UMR 7225, Paris Brain Institute, Paris, France.
Background: Cervical dystonia is characterized by abnormal neck and head movements, possibly related to a dysfunction of the interstitial nucleus of Cajal (INC) and the head neural integrator, a system responsible for the control of head and eye movements. However, neuroanatomical evidence of alterations in the head neural integrator in cervical dystonia is sparse.
Objectives: We investigated structural and functional integrity of the INC and its connections in cervical dystonia.
Imaging Neurosci (Camb)
September 2025
Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, United States.
Adolescent neuroimaging studies of sex differences in the human brain predominantly examine average differences between males and females. This focus on mean differences without probing relative distributions and similarities may contribute to both conflation and overestimation of sex differences and sexual dimorphism in the developing human brain. We aimed to characterize the variance in brain macro- and micro-structure in early adolescence as it pertains to sex at birth using a large sample of 9-11-year-olds from the Adolescent Brain Cognitive Development (ABCD) Study (N = 7,723).
View Article and Find Full Text PDFDev Cogn Neurosci
August 2025
Université Paris Cité, Inserm, NeuroDiderot, Paris F-75019, France; Université Paris-Saclay, CEA, NeuroSpin, UNIACT, Gif-sur-Yvette F-91191, France.
The sensorimotor system develops early in utero and supports the emergence of body representations critical for perception, action, and interaction with environment. While somatotopic protomaps are already developed in the primary somatosensory and motor cortices in late pregnancy, little is known about the anatomical substrates of this functional specialization. In this study, we aimed to decipher the microstructural properties of these regions in the developing brain.
View Article and Find Full Text PDF