Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To develop and authenticate a neoadjuvant chemotherapy (NACT) pathological complete remission (pCR) model based on the expression of Reg IV within breast cancer tissues with the objective to provide clinical guidance for precise interventions.

Method: Data relating to 104 patients undergoing NACT were collected. Variables derived from clinical information and pathological characteristics of patients were screened through logistic regression, random forest, and Xgboost methods to formulate predictive models. The validation and comparative assessment of these models were conducted to identify the optimal model, which was then visualized and tested.

Result: Following the screening of variables and the establishment of multiple models based on these variables, comparative analyses were conducted using receiver operating characteristic (ROC) curves, calibration curves, as well as net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Model 2 emerged as the most optimal, incorporating variables such as HER-2, ER, T-stage, Reg IV, and Treatment, among others. The area under the ROC curve (AUC) for Model 2 in the training dataset and test dataset was 0.837 (0.734-0.941) and 0.897 (0.775-1.00), respectively. Decision curve analysis (DCA) and clinical impact curve (CIC) further underscored the potential applications of the model in guiding clinical interventions for patients.

Conclusion: The prediction of NACT pCR efficacy based on the expression of Reg IV in breast cancer tissue appears feasible; however, it requires further validation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11341653PMC
http://dx.doi.org/10.1007/s12282-024-01609-yDOI Listing

Publication Analysis

Top Keywords

breast cancer
12
neoadjuvant chemotherapy
8
pathological complete
8
complete remission
8
model based
8
cancer tissues
8
based expression
8
expression reg
8
reg breast
8
model
6

Similar Publications

Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF