Hydrogen Bonds and In situ Photoinduced Metallic Bi/Ni Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis.

Angew Chem Int Ed Engl

Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology,

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For heterojunction system, the lack of stable interfacial driving force and definite charge transfer channel makes the charge separation and transfer efficiency unsatisfactory. The photoreaction mechanism occurring at the interface also receives less attention. Herein, a 2D/2D Z-scheme junction BiOBr@NiFe-LDH with large-area contact featured by short interface hydrogen bonds and strong interfacial electric field (IEF) is synthesized, and in situ photoinduced metallic species assisting charge transfer mechanism is demonstrated. The hydrogen bonds between O atoms from BiOBr and H atoms from NiFe-LDH induce a significant interfacial charge redistribution, establishing a robust IEF. Notably, during photocatalytic reaction, Bi and Ni are in situ performed in heterojunction, which separately act as electron transport mediator and electron trap to further accelerate charge transfer efficiency up to 71.2 %. Theoretical calculations further demonstrate that the existence of Bi strengthens the IEF. Therefore, high-speed spatial charge separation is realized in Bi/BiOBr@Ni/NiFe-LDH, leading to a prominent photocatalytic activity with a tetracycline removal ratio of 88.3 % within 7 min under visible-light irradiation and the presence of persulfate, far exceeding majority of photocatalysts reported previously. This study provides valid insights for designing hydrogen bonding heterojunction systems, and advances mechanistic understanding on in situ photoreaction at interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202408862DOI Listing

Publication Analysis

Top Keywords

charge transfer
16
hydrogen bonds
12
situ photoinduced
8
photoinduced metallic
8
charge separation
8
transfer efficiency
8
charge
7
transfer
5
hydrogen
4
situ
4

Similar Publications

Achieving a crack-free, high-surface-area photoanode is essential for maximizing the efficiency of dye-sensitized solar cells (DSSCs). In this work, rutile titanium dioxide (rTiO) nanoflowers were synthesized hydrothermally and then conformally coated with copper(I) oxide (CuO) by RF magnetron sputtering to seal pre-existing cracks and to create a nanothorn surface favorable for dye adsorption. Systematic control of the sputtering time identified 60 min as optimal condition, yielding a photoanode thickness of about 6.

View Article and Find Full Text PDF

Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.

View Article and Find Full Text PDF

The coordination chemistry of the planar, doubly π-extended bipyridine analog, 6,6',7,7'-biphenanthridine (p-biphe), is presented. The phenanthridine units in p-biphe are fused together at the 6- and 7- positions, and the resulting rigid ligand is compared with the more flexible parent "biphe" fused only at the 6-positions. p-Biphe is intensely fluorescent in solution with a much higher quantum yield, but, unlike biphe, at 77 K the fluorescence is not accompanied by any significant phosphorescence.

View Article and Find Full Text PDF

Electrocatalytic synthesis of ammonia is a sustainable, cost-effective alternative method for producing renewable electricity and can operate under milder conditions than the traditional Haber-Bosch method. We report direct laser-induced synthesis of copper nanocatalysts embedded in graphitic films for the synthesis of ammonia. Laser-induced metal-embedded graphene (m-LIG) offers many advantages, such as fast and simple synthesis, shape design of the electrodes, and direct printing on any substrate, including thermally sensitive plastics.

View Article and Find Full Text PDF

Singlet oxygen (O) plays a crucial role in cancer chemotherapy and ROS biology, driving the need for highly specific probes to monitor its dynamics in real time. Herein, we developed the ratiometric fluorescent probe NAP-t-PY, utilizing a 2-pyridone recognition unit. The probe's 1-methyl-3-benzyl-2-pyridone moiety reacts specifically with O [4 + 2] cycloaddition, forming the endoperoxide NAP-t-PY-EP.

View Article and Find Full Text PDF