98%
921
2 minutes
20
Defluoridation of coal mining water is of great significance for sustainable development of coal industry in western China. A novel one-step mechanochemical method was developed to prepare polymeric aluminum modified powder activated carbon (PAC) for effective fluoride removal from coal mining water. Aluminum was stably loaded on the PAC through facile solid-phase reaction between polymeric aluminum (polyaluminum chloride (PACl) or polyaluminum ferric chloride (PAFC)) and PAC (1:15 W/W). Fluoride adsorption on PACl and PAFC modified PAC (C-PACl and C-PAFC) all reached equilibrium within 5 min, at rate of 2.56 g mg sec and 1.31 g mg sec respectively. Larger increase of binding energy of Al on C-PACl (AlF bond: 76.64 eV and AlFOH bond: 77.70 eV) relative to that of Al on C-PAFC (AlF bond: 76.52 eV) explained higher fluoride uptake capacity of C-PACl. Less chloride was released from C-PACl than that from C-PAFC due to its higher proportion of covalent chlorine and lower proportion of ionic chlorine. The elements mapping and atomic composition proved the stability of Al loaded on the PAC as well as the enrichment of fluoride on both C-PACl and C-PAFC. The Bader charge, formation energy and bond length obtained from DFT computational results explained the fluoride adsorption mechanism further. The carbon emission was 7.73 kg CO-eq/kg adsorbent prepared through mechanochemical process, which was as low as 1:82.3 to 1:8.07 × 10 compared with the ones prepared by conventional hydrothermal methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2023.07.041 | DOI Listing |
J Hazard Mater
September 2025
Mining and Minerals Engineering, Virginia Tech, Blacksburg, VA, USA. Electronic address:
Occupational lung disease remains a serious concern among miner workers, underscoring the need for improved characterization of respirable dust. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) enables high-resolution analysis of filter samples, but accurate identification of complex, multi-constituent particles like agglomerates during direct-on-filter (DOF) analysis remains challenging. This is because standard tools for automated SEM-EDX treat each dust entity as an independent particle.
View Article and Find Full Text PDFJ Adv Res
September 2025
State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology at Beijing, Beijing 100083, China. Electronic address:
Introduction: Accurate characterization of multi-size fractures in coal is crucial for estimating its transport properties. However, the extraction of narrow microfractures in 3D voxel-type CT images is difficult, which causes the loss of connectivity in the extracted fracture network and reduces the accuracy of the predicted transport properties.
Objectives: Improving the image quality and optimizing the segmentation process to deal with the inaccuracy of fracture extraction from coal CT images.
J Environ Manage
September 2025
State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Ecohydrology and High Efficient Utilization of Water Resources, Hohhot, 010018, China; Inner Mongolia Section of the Yellow
Large-scale underground coal mining alters regional water cycles, yet the mechanisms governing interactions among water bodies in deep mining areas are poorly understood. For this purpose, by integrating hydrogen and oxygen isotopes, water levels, hydrogeological conditions, and end-member mixing analysis (EMMA), this study systematically analyzed and quantified the circulation and transformation mechanisms among different water bodies influenced by coal mining. Key findings reveal: (1) Mining-induced fractures disrupt the aquitard above the coal seam, establishing a direct hydraulic link between Zhiluo Formation confined groundwater and mine water, with the former contributing 87.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technol
Aiming at the problems such as large dust in each production process of open-pit mines, insufficient water resistance of the curing layer of dust control materials, and poor mechanical strength, this research applied the network generated by Schiff base reaction between oxidized starch (OS) and gelatin (GEL) as the basis, and combined with polyvinyl alcohol (PVA) and calcium chloride (CaCl). This material improves the problem of poor dust suppression effect caused by the environment of open-pit coal mines. It was found that the large number of amino groups contained in GEL attack the carbon atoms in the carbonyl group of OS to form carbon-nitrogen double bonds, generating Schiff bases as the crosslinking network, which enhanced the water resistance of the polymers.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
State Key Laboratory for Safe Mining of Deep Coal Resources and Environment Protection, Anhui University of Science and Technology, Huainan 232001, China; School of Spatial Informatics and Geomatics Engineering, Anhui University of Science and Technology, Huainan 232001, China. Electronic address: c
Conventional methods for soil sampling and soil water content (SWC) measurement are often labor-intensive and time-consuming. The Pedo-transfer function (PTF) integrating soil spectroscopy with soil physicochemical properties provides a more efficient approach for SWC estimation. However, existing studies highlight regional limitations in the accuracy of PTFs across diverse geographical regions.
View Article and Find Full Text PDF