98%
921
2 minutes
20
Background: No in-shoe systems, measuring both components of plantar load (plantar pressure and shear stress) are available for use in patients with diabetes. The STAMPS (STrain Analysis and Mapping of the Plantar Surface) system utilises digital image correlation (DIC) to determine the strain sustained by a deformable insole, providing a more complete understanding of plantar shear load at the foot-surface interface.
Research Questions: What is the normal range and pattern of strain at the foot-surface interface within a healthy population as measured by the STAMPS system? Is STAMPS a valid tool to measure the effects of plantar load?
Methods: A cross-sectional study of healthy participants was undertaken. Healthy adults without foot pathology or diabetes were included. Participants walked 20 steps with the STAMPS insole in a standardised shoe. Participants also walked 10 m with the Novel Pedar® plantar pressure measurement insole within the standardised shoe. Both measurements were repeated three times. Outcomes of interest were global and regional values for peak resultant strain (S) and peak plantar pressure (PPP).
Results: In 18 participants, median peak S and PPP were 35.01 % and 410.6kPa respectively. The regions of the hallux and heel sustained the highest S (29.31 % (IQR 24.56-31.39) and 20.50 % (IQR 15.59-24.12) respectively) and PPP (344.8kPa (IQR 268.3 - 452.5) and 279.3kPa (IQR 231.3-302.1) respectively). S was moderately correlated with PPP (r= 0.65, p < 0.001). Peak S was located at the hallux in 55.6 % of participants, at the 1st metatarsal head (MTH) in 16.7 %, the heel in 16.7 %, toes 3-5 in 11.1 % and the MTH2 in 5.6 %.
Significance: The results demonstrate the STAMPS system is a valid tool to measure plantar strain. Further studies are required to investigate the effects of elevated strain and the relationship with diabetic foot ulcer formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2024.06.018 | DOI Listing |
Gait Posture
September 2025
Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
Background: While the plantar fat pad is known for its role in shock absorption and plantar force distribution during weight-bearing activities, its impact on running biomechanics is not well understood.
Research Question: Does plantar fat pad thickness affect lower limb biomechanics and plantar pressure distribution during running in healthy adults?
Methods: This cross-sectional observational study involved fourteen participants (18-50 years) who ran at their preferred speed on a 10-meter walkway while lower limb kinematics and ground reaction forces were recorded using a motion capture system. Plantar pressure and force on the right foot were measured using a pressure platform.
ACS Appl Mater Interfaces
September 2025
DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China.
Achieving both high sensitivity and a wide detection range in flexible pressure sensors poses a challenge due to their inherent trade-off. Although porous structures offer promising solutions, conventional methods (templating, foaming, and freeze-drying) fail to precisely control cavity dimensions, spatial arrangement, and 3D morphology, which are crucial for sensing performance. Here, we propose a scalable fabrication strategy that integrates triply periodic minimal surface (TPMS) geometries─precisely engineered via FDM 3D printing─with ultrasonic impregnation of carbon black (CB) into TPU scaffolds.
View Article and Find Full Text PDFMed Sci Sports Exerc
September 2025
Department of Engineering Mechanics, Tsinghua University, Beijing, CHINA.
Purpose: Develop a musculoskeletal-environment interaction model to reconstruct the dynamic-interaction process in skiing.
Methods: This study established a skier-ski-snow interaction (SSSI) model that integrated a 3D full-body musculoskeletal model, a flexible ski model, a ski boot model, a ski-snow contact model, and an air resistance model. An experimental method was developed to collect kinematic and kinetic data using IMUs, GPS, and plantar pressure measurement insoles, which were cost-effective and capable of capturing motion in large-scale field conditions.
IEEE J Biomed Health Inform
September 2025
Understanding foot kinetics is fundamental to analyzing human locomotion, offering critical insights into mechanical loads exerted on the feet. While vertical ground reaction force (vGRF) is widely used in biomechanics research, comprehensive 3D kinetic measurements, including ground reaction force (GRF), ground reaction moment (GRM), and center of pressure (CoP) along the anterior-posterior and medial-lateral axes, provide deeper insights for various applications. Smart insoles, though portable, cost-effective, and user-friendly, primarily capture vGRF and often generate lower-quality data than force plates and instrumented treadmills.
View Article and Find Full Text PDFFront Sports Act Living
August 2025
Department of Physical Activities and Health Sciences, Masaryk University, Faculty of Sports Studies, Brno, Czechia.
Introduction: Deficits in lower-limb muscle strength and altered gait mechanics are common after anterior cruciate ligament reconstruction (ACL). While isokinetic strength testing is widely accepted in return-to-sport assessment, the role of plantar pressure analysis in detecting compensatory gait strategies remains underexplored.
Methods: This study included 10 male patients (30.