Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Upon nutrient starvation, serovar L2 (CTL) shifts from its normal growth to a non-replicating form, termed persistence. It is unclear if persistence reflects an adaptive response or a lack thereof. To understand this, transcriptomics data were collected for CTL grown under nutrient-replete and nutrient-starved conditions. Applying K-means clustering on transcriptomics data revealed a global transcriptomic rewiring of CTL under stress conditions in the absence of any canonical global stress regulator. This is consistent with previous data that suggested that CTL's stress response is due to a lack of an adaptive response mechanism. To investigate the impact of this on CTL metabolism, we reconstructed a genome-scale metabolic model of CTL (iCTL278) and contextualized it with the collected transcriptomics data. Using the metabolic bottleneck analysis on contextualized iCTL278, we observed that phosphoglycerate mutase () regulates the entry of CTL to the persistence state. Our data indicate that has the highest thermodynamics driving force and lowest enzymatic cost. Furthermore, CRISPRi-driven knockdown of in the presence or absence of tryptophan revealed the importance of this gene in modulating persistence. Hence, this work, for the first time, introduces thermodynamics and enzyme cost as tools to gain a deeper understanding on CTL persistence.

Importance: This study uses a metabolic model to investigate factors that contribute to the persistence of serovar L2 (CTL) under tryptophan and iron starvation conditions. As CTL lacks many canonical transcriptional regulators, the model was used to assess two prevailing hypotheses on persistence-that the chlamydial response to nutrient starvation represents a passive response due to the lack of regulators or that it is an active response by the bacterium. K-means clustering of stress-induced transcriptomics data revealed striking evidence in favor of the lack of adaptive (i.e., a passive) response. To find the metabolic signature of this, metabolic modeling pin-pointed pgm as a potential regulator of persistence. Thermodynamic driving force, enzyme cost, and CRISPRi knockdown of pgm supported this finding. Overall, this work introduces thermodynamic driving force and enzyme cost as a tool to understand chlamydial persistence, demonstrating how systems biology-guided CRISPRi can unravel complex bacterial phenomena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323709PMC
http://dx.doi.org/10.1128/msystems.00717-24DOI Listing

Publication Analysis

Top Keywords

transcriptomics data
16
metabolic model
12
response lack
12
driving force
12
enzyme cost
12
ctl
9
phosphoglycerate mutase
8
persistence
8
nutrient starvation
8
serovar ctl
8

Similar Publications

Osteoporotic hip fractures are a considerable cause of pain and disability particularly among the elderly. Osteoporosis causes loss of bone stability, which in turn leads to an increased risk of fractures especially in metaphyseal bone. Moreover, the body's capacity for healing is diminished, resulting in prolonged recovery times following these fractures.

View Article and Find Full Text PDF

Background: Soil salinization represents a critical global challenge to agricultural productivity, profoundly impacting crop yields and threatening food security. Plant salt-responsive is complex and dynamic, making it challenging to fully elucidate salt tolerance mechanism and leading to gaps in our understanding of how plants adapt to and mitigate salt stress.

Results: Here, we conduct high-resolution time-series transcriptomic and metabolomic profiling of the extremely salt-tolerant maize inbred line, HLZY, and the salt-sensitive elite line, JI853.

View Article and Find Full Text PDF

ASO Practice Guidelines Series: Soft Tissue Sarcoma of the Extremities and Superficial Trunk.

Ann Surg Oncol

September 2025

Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA.

Soft tissue sarcomas (STS) are a heterogeneous group of rare malignant tumors arising from mesenchymal tissues, with extremity and superficial trunk STS (eSTS) comprising the majority of cases. The management of localized eSTS requires a multidisciplinary approach to optimize oncologic and functional outcomes. This review outlines the natural history, diagnostic workup, and treatment principles for localized eSTS, emphasizing the role of histology-specific considerations in guiding management strategies.

View Article and Find Full Text PDF

Low-cost and high-throughput RNA sequencing data for barley RILs achieved GP performance comparable to or better than traditional SNP array datasets when combined with parental whole-genome sequencing SNP data. The field of genomic selection (GS) is advancing rapidly on many fronts including the utilization of multi-omics datasets with the goal of increasing prediction ability and becoming an integral part of an increasing number of breeding programs ensuring future food security. In this study, we used RNA sequencing (RNA-Seq) data to perform genomic prediction (GP) on three related barley RIL populations.

View Article and Find Full Text PDF

Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.

View Article and Find Full Text PDF