Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human infection with the coronavirus disease 2019 (COVID-19) is mediated by the binding of the spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the human angiotensin-converting enzyme 2 (ACE2). The frequent mutations in the receptor-binding domain (RBD) of the spike protein induced the emergence of variants with increased contagion and can hinder vaccine efficiency. Hence, it is crucial to better understand the binding mechanisms of variant RBDs to human ACE2 and develop efficient methods to characterize this interaction. In this work, we present an approach that uses machine learning to analyze the molecular dynamics simulations of RBD variant trajectories bound to ACE2. Along with the binding free energy calculation, this method was used to characterize the major differences in ACE2-binding capacity of three SARS-CoV-2 RBD variants-namely the original Wuhan strain, Omicron BA.1, and the more recent Omicron BA.5 sublineages. Our analyses assessed the differences in binding free energy and shed light on how it affects the infectious rates of different variants. Furthermore, this approach successfully characterized key binding interactions and could be deployed as an efficient tool to predict different binding inhibitors to pave the way for new preventive and therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204244PMC
http://dx.doi.org/10.3390/ijms25126535DOI Listing

Publication Analysis

Top Keywords

machine learning
8
spike protein
8
binding free
8
free energy
8
binding
6
learning approach
4
approach identify
4
identify key
4
key residues
4
residues involved
4

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF