98%
921
2 minutes
20
The incorporation of well-designed antibiotic nanocarriers, along with an antibiotic adjuvant effect, in combination with various antibiotics, offers an opportunity to combat drug-resistant strains. However, precise control over morphology and encapsulated payload release can significantly impact their antibacterial efficacy and synergistic effects when used alongside antibiotics. Here, this study focuses on developing lipopeptide-based nanoantibiotics, which demonstrate an antibiotic adjuvant effect by inducing pH-induced collapse and negative-charged-surface-induced deformation. This enhances the disruption of the bacterial outer membrane and facilitates drug penetration, effectively boosting the antimicrobial activity against drug-resistant strains. The modulation regulations of the lipopeptide nanocarriers with modular design are governed by the authors. The nanoantibiotics, made from lipopeptide and ciprofloxacin (Cip), have a drug loading efficiency of over 80%. The combination with Cip results in a significantly low fractional inhibitory concentration index of 0.375 and a remarkable reduction in the minimum inhibitory concentration of Cip against multidrug-resistant (MDR) Escherichia coli (clinical isolated strains) by up to 32-fold. The survival rate of MDR E. coli peritonitis treated with nanoantibiotics is significantly higher, reaching over 87%, compared to only 25% for Cip and no survival for the control group. Meanwhile, the nanoantibiotic shows no obvious toxicity to major organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202401470 | DOI Listing |
Langmuir
January 2025
State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China.
pH-sensitive lipids are important components of lipid nanoparticles, which enable the targeted delivery and controlled release of drugs. Understanding the mechanism of pH-triggered drug release at the molecular level is important for the rational design of ionizable lipids. Based on a recently reported pH-switchable lipid, named SL2, molecular dynamics (MD) simulations were employed to explore the microscopic mechanism behind the membrane destabilization induced by the conformational change of pH-switchable lipids.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
School of Bioscience and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China.
The incorporation of well-designed antibiotic nanocarriers, along with an antibiotic adjuvant effect, in combination with various antibiotics, offers an opportunity to combat drug-resistant strains. However, precise control over morphology and encapsulated payload release can significantly impact their antibacterial efficacy and synergistic effects when used alongside antibiotics. Here, this study focuses on developing lipopeptide-based nanoantibiotics, which demonstrate an antibiotic adjuvant effect by inducing pH-induced collapse and negative-charged-surface-induced deformation.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2022
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka560012, India.
Aggregation of intrinsically disordered proteins (IDPs) can lead to neurodegenerative diseases. Although there is experimental evidence that acidic pH promotes IDP monomer compaction leading to aggregation, the general mechanism is unclear. We studied the pH effect on the conformational ensemble of prothymosin-α (proTα), which is involved in multiple essential functions, and probed its role in aggregation using computer simulations.
View Article and Find Full Text PDFCarbohydr Polym
February 2020
Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Gyeonggi-do 14662, Republic of Korea; Department of Biomedical Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Gyeonggi-do 14662, Republic of Korea. Electronic address:
We report here the tumor-implantable microparticles with a honeycomb-like porous structure. These microparticles were prepared by electrospinning using γ-cyclodextrin (γ-CD) conjugated with 3-(diethylamino)propylamine (DEAP, as a pH-responsive moiety), named γ-CD-DEAP. The resulting microparticles had pore channels (constructed using γ-CD-DEAP) extending into the deep compartment of the microparticles and allowing efficient paclitaxel (PTX, as a chemotherapeutic model drug) entrapment by a simple hole-filling encapsulation process.
View Article and Find Full Text PDFBioresour Technol
January 2020
Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico. Electronic address:
The performance and microbial communities of a continuous dark fermentation reactor exposed to perturbations induced by substrate change and acidic pH shock were investigated. A mesophilic well-mixed reactor separately fed with two types of tequila vinasses (TVs) and lactose was operated at a fixed pH of 5.5, except during short-term pH (3.
View Article and Find Full Text PDF