98%
921
2 minutes
20
Phosphorus (P) that accumulates in agricultural riparian zones can be released under certain hydrological and biogeochemical conditions, thereby limiting the effectiveness of these zones in reducing P loads from field to stream. The study objective was to explore factors that may be contributing to, or limiting, high soluble reactive phosphorus (SRP) concentrations in the shallow aquifer of an alluvial upland riparian zone located in a continental climate. Field investigations including porewater sampling from six vertical nests, soil sampling, and continuous soil moisture, groundwater table, and redox measurements were conducted over 19 months. Porewater SRP concentrations were generally low in the aquifer considering all sampling times (median = 14.7 µg/L; interquartile range [IQR] = 11.1 µg/L, 287 samples). The overall low SRP may be due to low reducible labile soil P (median = 21.1 µgP/g dw, IQR = 10.9 µgP/g dw, 21 samples). However, high SRP concentrations (>52 µg/L, 95% quartile) did occur intermittently in space and time with no clear spatial or temporal patterns. Analyses indicate that most high concentrations were likely not associated with factors previously reported to influence SRP release in riparian aquifers, including redox conditions, pH, and soil drying and wetting. Further, data indicate that internally released or externally supplied SRP may undergo rapid (re-) sequestration within the aquifer, limiting its vertical or horizontal transport. The study findings highlight the complexity of P behavior in riparian zones and the need for caution when assessing the effectiveness of conservation practices and in interpreting potential impacts of subsurface water quality on stream water quality when monitoring locations are distant from the stream.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jeq2.20585 | DOI Listing |
Int J Pharm
September 2025
Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China. Electronic address:
Emodin is a natural anthraquinone derivative with poor water solubility, which limits its antibacterial activity. The purpose of this work is to investigate the antibacterial activity of emodin nanocrystals (EMD-NCs) with different particle sizes against Staphylococcus aureus (S. aureus) and explores its underlying mechanisms.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Piero Gobetti, 85, Bologna 40129, Italy.
Donor-acceptor-donor (D-A-D) thiophene-based compounds, characterized by thiophene as a donor unit and benzothiadiazole (Bz) as an acceptor, represent an emerging class of theranostic agents for imaging and photodynamic therapy. Here, we expand this class of molecules by strategically varying the position of the electron-accepting unit within the oligothiophene (OT) backbone structure, realizing a series of different push-pull architectures (A-D, D-A-D, and D-A). This rational design allows for precise modulation of key photophysical parameters, including absorption and emission spectra, molar absorption coefficient, charge separation, and frontier molecular orbitals.
View Article and Find Full Text PDFJ Environ Pathol Toxicol Oncol
September 2025
Pharmacology and Drug Discovery Research Laboratory, Division of Life Sciences; Institute of Advanced Study in Science and Technology (IASST), An Autonomous Institute under - Department of Science & Technology (Govt. of India).
Iron is an essential trace element for the human body, but having too much or too little of it can cause various biological issues. When ferrous ions react with hydrogen peroxide, they create highly reactive and soluble hydroxyl radicals that can damage cells through oxidation. This reaction, known as the Fenton reaction, can cause lipid peroxidation and ferroptosis.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.
View Article and Find Full Text PDFNitric Oxide
September 2025
Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC, 27109, USA. Electronic address:
We recently demonstrated a rapid reaction between labile ferric heme and nitric oxide (NO) in the presence of reduced glutathione (GSH) or other small thiols in a process called thiol-catalyzed reductive nitrosylation, yielding a novel signaling molecule, labile nitrosyl ferrous heme (NO-ferroheme), which we and others have shown can regulate vasodilation and platelet homeostasis. Red blood cells (RBCs) contain high concentrations of GSH, and NO can be generated in the RBC via nitrite reduction and/or RBC endothelial nitric oxide synthase (eNOS) so that NO-ferroheme could, in principle, be formed in the RBC. NO-ferroheme may also form in other cells and compartments, including in plasma, where another small and reactive thiol species, hydrogen sulfide (HS/HS), is also present and may catalyze NO-ferroheme formation akin to GSH.
View Article and Find Full Text PDF