Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: A couple of cardiac magnetic resonance (CMR) attributes strongly predict adverse remodeling after ST-segment elevation myocardial infarction (STEMI); however, the value of incorporating high-risk CMR attributes, particularly, in patients with non-reduced ejection fraction, remains undetermined. This study sought to evaluate the independent and incremental predictive value of a multiparametric CMR approach for adverse remodeling after STEMI across left ventricular ejection fraction (LVEF) categories.

Methods: A total of 157 patients with STEMI undergoing primary percutaneous coronary intervention were prospectively enrolled. Adverse remodeling was defined as ≥20% enlargement in left ventricular end-diastolic volume from index admission to 3 months of follow-up.

Results: Adverse remodeling occurred in 23.6% of patients. After adjustment for clinical risk factors, a stroke volume index <29.6 mL/m, a global longitudinal strain >-7.5%, an infarct size >39.2%, a microvascular obstruction >4.9%, and a myocardial salvage index <36.4 were independently associated with adverse remodeling. The incidence of adverse remodeling increased with the increasing number of high-risk CMR attributes, regardless of LVEF (LVEF ≤ 40%: P = 0.026; 40% < LVEF < 50%: P = 0.001; LVEF ≥ 50%: P < 0.001). The presence of ≥4 high-risk attributes was an independent predictor of LV adverse remodeling (70.0% vs. 16.8%, adjusted OR 9.68, 95 CI% 3.25-28.87, P < 0.001). Furthermore, the number of high-risk CMR attributes had an incremental predictive value over reduced LVEF and baseline clinical risk factors (AUC: 0.81 vs. 0.68; P = 0.002).

Conclusions: High-risk CMR attributes showed a significant association with adverse remodeling after STEMI across LVEF categories. This imaging-based model provided incremental value for adverse remodeling over traditional clinical factors and LVEF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hjc.2024.06.003DOI Listing

Publication Analysis

Top Keywords

adverse remodeling
20
cmr attributes
12
high-risk cmr
8
attributes predict
8
predict adverse
8
remodeling st-segment
8
st-segment elevation
8
elevation myocardial
8
myocardial infarction
8
ejection fraction
8

Similar Publications

The Grams model, designed to predict adverse event risks in advanced chronic kidney disease (CKD) patients, was evaluated in a Chinese cohort of 1,333 patients with eGFR below 30 mL/min/1.73 m. The model demonstrated moderate to good discrimination across outcomes, performing well in predicting kidney replacement therapy (KRT) but overestimating the risks of cardiovascular disease (CVD) and mortality.

View Article and Find Full Text PDF

Cannabis consumption and legalization is increasing globally, raising concerns about its impact on fertility. In humans, we previously demonstrated that tetrahydrocannabinol (THC) and its metabolites reach the ovarian follicle. An extensive body of literature describes THC's impact on sperm, however no such studies have determined its effects on the oocyte.

View Article and Find Full Text PDF

Heart failure (HF) is a complex clinical syndrome marked by impaired contractility, adverse remodeling, and dysregulated intracellular signaling. Protein kinases are central regulators of cardiac function, modulating calcium handling, gene transcription, hypertrophy, and apoptosis through phosphorylation of target proteins. In HF, chronic activation of kinases such as protein kinase A, protein kinase C, calcium/calmodulin-dependent kinase II, mitogen-activated protein kinases, protein kinase B, and Rho-associated protein kinase contributes to progressive cardiac dysfunction.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is characterized by airway remodeling and inflammation. Cigarette smoke extract (CSE) induces apoptosis, inflammation, and oxidative stress in COPD. Tripterygium glycosides (TG) are an active compound found in the root extracts of Tripterygium wilfordii Hook F (TWHF) that possesses anti-inflammatory and immunosuppressive effects.

View Article and Find Full Text PDF

Cardiovascular diseases are increasingly recognized as chronic disorders driven by a complex interplay between inflammation and fibrosis. In this review, we elucidate emerging mechanisms that govern the transition from acute inflammation to pathological fibrosis, with particular focus on cellular crosstalk between neutrophils, macrophages, fibroblasts, and myofibroblasts. We explore how dysregulated immune responses and extracellular matrix (ECM) remodeling sustain a pathogenic feedback loop, promoting myocardial stiffening and adverse cardiac remodeling.

View Article and Find Full Text PDF