98%
921
2 minutes
20
This study aims to evaluate the effects of substituting soybean meal with fermented rapeseed meal (FRM) on growth, antioxidant capacity, and liver and intestinal health of the genetically improved farmed tilapia (GIFT, Oreochromis niloticus). A total of 450 tilapia (7.22 ± 0.15 g) were fed with five experimental diets, including a basal diet containing 40% soybean meal (CP0), which was subsequently replaced by 25% (CP25), 50% (CP50), 75% (CP75), and 100% (CP100) FRM in a recirculated aquiculture system for 9 weeks (30 fish per tank in triplicates). The results showed that the weight gain, specific growth rate, feed intake, feed efficiency, hepatosomatic index, and viscerosomatic index of fish in both CP75 and CP100 groups were significantly lower than those in CP0 group (P < 0.05). The fish in CP100 group had the lower content of muscle crude protein while the higher level of muscle crude lipid (P < 0.05). Activities of serum aspartate aminotransferase, alanine aminotransferase along with total triglyceride in CP100 group were significantly higher than those in CP0 group (P < 0.05). There were no significant differences in the contents of liver protease, amylase, and lipase among five groups (P > 0.05). The activities of liver total antioxidant capacity and superoxide dismutase exhibited the increased tendency with the increase of FRM replacement levels from 25 to 50% (P < 0.05), while then significantly decreased from 75 to 100% (P < 0.05). Histological morphology indicated that the fish in between CP75 and CP100 groups had poor liver and intestine health. Intestinal microbial diversity analysis showed that the relative abundance of Cetobacterium and Alcaligenaceae in both CP75 and CP100 groups were lower than that in other three groups. In conclusion, the maximum replacement level of soybean meal with FRM in the diet was determined to be 50% without compromising the growth performance, antioxidant status, and liver and intestinal health of tilapia under the current experimental conditions. The observed decrease in food intake and subsequent retarded growth performance in the CP75 and CP100 groups can be attributed directly to a reduction in feed palatability caused by FRM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-024-01363-0 | DOI Listing |
J Food Sci
September 2025
College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, China.
The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
September 2025
School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, Western Australia, Australia.
Introducing underutilized legumes as plant-based protein sources to daily meals is an approach to address the increasing demand for alternative proteins. However, legumes often exhibit off-flavors and aromas, causing negative consumer perceptions. Lupins are an underutilized legume that is becoming popular as a plant protein source due to their high protein, fiber, and low starch contents.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
This study compared the effects of phosphorylated modified long-chain inulin (PF) with low (PF1), medium (PF3), and high (PF6) degrees of substitution on the rheological, thermal, gluten network depolymerization characteristics, and microstructure of unfrozen and frozen dough. The results showed that PF increased G', G", Tp, and ΔH of unfrozen and frozen dough. Gluten protein analysis revealed that PF significantly increased the SS and α-helix content in gluten, with 3 %FPF3 showing an 11.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China. Electronic address:
The formation and recrystallization of ice crystals during freezing causes irreversible structural damage to the dough matrix, which is characterized by the cold denaturation of the gluten protein structure and the degradation of the gluten network structure. Polysaccharides are widely used to improve the quality of frozen dough owing to their excellent water-holding and viscosity. Current research has shown that polysaccharides mitigate the physical damage of ice crystals on the gluten protein structure mainly by modifying the water status of frozen dough to inhibit the ice crystallization process.
View Article and Find Full Text PDFFood Res Int
November 2025
Food Analytics & Biotechnology, Department of Food Science, University of Copenhagen, Rolighedsvej 26, Frederiksberg 1958, Denmark.
White bread is a worldwide consumed food product with significant nutritional value. The loaf volume of bread is a crucial parameter that influences its texture, appearance and consumer acceptability. Near Infrared Spectroscopy (NIRS) has shown significant potential in predicting the loaf volume of white bread, providing a faster and potentially more accurate alternative to time consuming traditional methods.
View Article and Find Full Text PDF