98%
921
2 minutes
20
The development of effective bifunctional electrocatalysts that can realize water splitting to produce oxygen and hydrogen through oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is still a great challenge to be addressed. Herein, we report a simple and versatile approach to fabricate bifunctional OER and HER electrocatalysts derived from ZIF67/MXene hybrids sulfurization of the precursors in hydrogen sulfide gas atmosphere at high temperatures. The as-prepared CoS@C/MXene nanocomposites were characterized using a series of technologies including X-ray diffraction, gas sorption, scanning electronic microscopy, transmission electronic microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The synthesized CoS@C/MXene composites are electrocatalytically active in both HER and OER, and the CSMX-800 composite displayed the highest electrocatalytic performance towards OER and HER among all the produced samples. CSMX-800 exhibited overpotentials of 257 mV at 10 mA cm for OER and 270 mV at 10 mA cm for HER. Moreover, it also possesses small Tafel slope values of 93 mV dec and 103 mV dec for OER and HER, respectively. The enhanced electrocatalytic performance of the MXene-containing composites is due to their high surface area, enhanced conductivity, and faster charge transfer. This work demonstrated that CoS@C/MXene based electrocatalyst has great potential in electrochemical water splitting for hydrogen production, thus reducing carbon emissions and protecting the environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166099 | PMC |
http://dx.doi.org/10.1039/d4na00290c | DOI Listing |
J Colloid Interface Sci
September 2025
Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam. Electronic address:
Organic nucleophile-assisted natural seawater electrolysis has emerged as a promising strategy for green hydrogen production by significantly reducing energy consumption. Among Ni-based electrocatalysts, NiMoO has drawn attention for its activity in both oxygen evolution reaction (OER) and urea oxidation reaction (UOR). However, its practical application is hindered by severe surface passivation, particularly at industrial current densities (e.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China. Electronic address:
Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
Reaction intermediates (RI) are key factors that directly determine the efficiency of the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). In this study, a local electric field microenvironment was built in a FeNi and MoNi heterostructure (H-FeNiMo/NMF) to induce the redistribution of hydroxyls and protons on the metal sites during the OER and HER. H-FeNiMo/NMF requires only 270 and 155 mV to reach 100 mA cm in alkaline media for OER and HER, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
The accumulation of nitrate (NO) from agricultural runoff poses a growing threat to ecosystems and public health. Converting nitrate into ammonia (NH) through the electrochemical nitrate reduction reaction (NORR) offers a promising strategy to mitigate environmental contamination while creating a sustainable circular route to fertilizer production. However, achieving high NH production and energy efficiency remains challenging.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, National Center for International Research on Catalytic Technology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
Seawater electrolysis offers a sustainable pathway for green hydrogen production, but chloride-induced side reactions, particularly chlorine evolution (ClER), limit the stability and efficiency of catalysts. Based on an interface-engineering strategy, a bifunctional CoP-MXene electrocatalyst was designed and fabricated, in which electrons are transferred from the Ti sites of the MXene support to the adjacent Co active centers of CoP. This directional electron donation modulates the Co electronic structure, generating electron-rich Co sites that effectively suppress Cl adsorption via electronic repulsion while preserving the OH reaction pathways through favorable proton-electron coupling.
View Article and Find Full Text PDF