98%
921
2 minutes
20
Surface-enhanced Raman spectroscopy (SERS), a rapid, low-cost, non-invasive, ultrasensitive, and label-free technique, has been widely used in-situ and ex-situ biomedical diagnostics questions. However, analyzing and interpreting the untargeted spectral data remains challenging due to the difficulty of designing an optimal data pre-processing and modelling procedure. In this paper, we propose a Multi-branch Attention Raman Network (MBA-RamanNet) with a multi-branch attention module, including the convolutional block attention module (CBAM) branch, deep convolution module (DCM) branch, and branch weights, to extract more global and local information of characteristic Raman peaks which are more distinctive for classification tasks. CBAM, including channel and spatial aspects, is adopted to enhance the distinctive global information on Raman peaks. DCM is used to supplement local information of Raman peaks. Autonomously trained branch weights are applied to fuse the features of each branch, thereby optimizing the global and local information of the characteristic Raman peaks for identifying diseases. Extensive experiments are performed for two different neurological disorders classification tasks via untargeted serum SERS data. The results demonstrate that MBA-RamanNet outperforms commonly used CNN methods with an accuracy of 88.24% for the classification of healthy controls, mild cognitive impairment, Alzheimer's disease, and Non-Alzheimer's dementia; an accuracy of 90% for the classification of healthy controls, elderly depression, and elderly anxiety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166416 | PMC |
http://dx.doi.org/10.1364/BOE.514196 | DOI Listing |
Small
September 2025
Phonon Engineering Research Center of Jiangsu Province, Center for Quantum Transport and Thermal Energy Science, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023, China.
As a 2D material with distinctive ferroelectric properties, InSe offers significant potential for the applications in information memory and advanced data storage technologies. It also exhibits a complex phase diagram that is highly sensitive to temperature and pressure variations, resulting in diverse lattice configurations. While extensive studies have focused on the phase transition behavior of InSe, its impact on phonon transport remains largely unexplored.
View Article and Find Full Text PDFCuZnSnS (CZTS) has been synthesised using ethylene glycol as a solvent by the solvothermal method. Preliminary characterisation, like X-ray diffraction, Raman spectroscopy, and FTIR, confirmed the tetragonal structure of CZTS with kesterite phase. In the synthesis, a series of samples with different concentrations of sulfur were produced, accompanied by an in-depth analysis of structural parameters such as crystallite size and strain, utilising both the Scherrer equation and the Williamson-Hall method.
View Article and Find Full Text PDFFood Chem
August 2025
College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
The antioxidant capacity and mechanism of linusorbs (LOs) on lipid systems with different unsaturation was unclear. This study aimed to explore the oxidative stability of flaxseed oil (FO), walnut oil (WO), and camellia oil (CO) in the presence of LOs in order to recognize the impacts of unsaturation degree of the lipid systems on the performance of natural antioxidants. By the evaluation of fatty acid compositions, PV/CD and AV/p-AV value, and changes of characteristic peaks in Raman spectra, LOs can inhibit oil oxidation in different lipid systems, especially potent for C18:3-based FO, followed by C18:2-based WO, and C18:1-based CO.
View Article and Find Full Text PDFChemSusChem
September 2025
Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China.
The electrochemical reduction of CO to CH offers a promising pathway for renewable energy storage, yet remains limited by sluggish kinetics, poor catalyst stability, and competing hydrogen evolution reactions (HER). Herein, a host-guest strategy is reported for engineering metal-organic frameworks (MOFs) through the encapsulation of conductive polymers to stabilize reticular skeletons and regulate interfacial water for efficient CO-to-CH conversion. Specifically, polypyrrole (PPy) and polyaniline (PANI) are confined within Cu-anchored UiO-67 frameworks, resulting in hybrid catalysts-PPy@Cu-UiO-67 and PANI@Cu-UiO-67-with preserved crystallinity and enhanced electronic conductivity.
View Article and Find Full Text PDFRSC Adv
August 2025
Department of Chemistry "G. Ciamician", University of Bologna Via Piero Gobetti 83 40129 Bologna Italy
The increasing presence of micro- and nanoplastics in natural environments raises concerns about their interactions with biological particles such as pollen, that may act as carriers but could also undergo subtle chemical or structural changes, potentially influencing their ecological role. At the same time, the analytical and technological approaches used to investigate nanoplastic pollution mechanism can themselves raise concerns regarding their greenness. In this interdisciplinary study, we explored the interactions between multifloral bee pollen and polyethylene terephthalate nanoparticles (NanoPET) under environmentally relevant conditions using a multimodal analytical strategy combining AF4 (Asymmetrical Flow Field-Flow Fractionation) multidetection, Pyrolysis-GC-MS (py-GC-MS), Field Emission Scanning Electron Microscopy (FESEM), and dielectrophoresis-Raman spectroscopy (DEP-Raman).
View Article and Find Full Text PDF