98%
921
2 minutes
20
We introduce a unique dual-function detector with an asymmetric light illumination based on the black silicon co-hyperdoped with sulfur and nitrogen for light and gas detection, and the properties in NO gas sensing and photoelectric detection are studied under various light and gas environments, respectively. Enhanced performance of the device under certain light and gas conditions is observed. When illuminated at the optimal wavelength, the gas sensors' responsivity to NO can be enhanced by approximately 5 to 200 times over 730 nm illumination, respectively. The photodetectors' photoresponsivity increases 15 to 200 times in a 300 ppm NO gas environment compared to air. Such mutual enhancement achieved through the clever combination of light and gas implies a novel approach to improve the performance of the black silicon detectors in both gas sensing and photoelectric detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.521885 | DOI Listing |
Phys Rev Lett
August 2025
Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
We have observed the signatures of valence electron rearrangement in photoexcited ammonia using ultrafast hard x-ray scattering. Time-resolved x-ray scattering is a powerful tool for imaging structural dynamics in molecules because of the strong scattering from the core electrons localized near each nucleus. Such core-electron contributions generally dominate the differential scattering signal, masking any signatures of rearrangement in the chemically important valence electrons.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, State Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
The construction of C─N bonds from simple precursors under ambient conditions is a fundamental challenge in green chemistry, especially when it comes to avoiding energy-intensive protocols. Here, we present a continuous flow photocatalytic platform that enables the efficient coupling of C─N bonds between methanol and ammonia at ambient temperature and pressure. By synergistically engineering a Pd clusters-decorated TiO photocatalyst (1Pd/TiO) and a mass transfer-enhanced gas-liquid-solid Taylor flow reactor, the system achieves a remarkable formamide productivity of 256.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.
The development of ultrablack coatings with exceptional absorption (>98%) has historically faced significant scientific and engineering challenges, primarily due to limitations in material selection, structural design, and practical durability. Considering the difficulties in practical applications of ultrablack materials with micro/nano structures and the limitations of planar ultrablack coatings in optical performance, we introduce an innovative integration of conventional planar ultrablack coatings with a specifically engineered trilayer antireflection architecture. This hybrid system incorporates a refractive index distribution (1.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.
Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.
View Article and Find Full Text PDFLangmuir
September 2025
School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
The study of the self-assembly of surfactants in aqueous solutions, though a traditional field, remains fascinating and full of novelty. In this article, the anionic perfluorodecanoic acid surfactant (PFA) is separately complexed with three hydroxyalkylamines (monoethanolamine (MEA), diethylamine (DEA), and triethanolamine (TEA)) in aqueous solutions. The transformation of aggregate morphologies from spherical unilamellar to nanotubes and then to spherical bilamellar is observed at room temperature, which is confirmed by cryo-transmission electron microscopy (cryo-TEM).
View Article and Find Full Text PDF