Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tunneling ionization is a crucial process in the interaction between strong laser fields and matter which initiates numerous nonlinear phenomena including high-order harmonic generation, photoelectron holography, etc. Both adiabatic and nonadiabatic tunneling ionization are well understood in atomic systems. However, the tunneling dynamics in solids, especially nonadiabatic tunneling, has not yet been fully understood. Here, we study the sub-cycle resolved strong-field tunneling dynamics in solids via a complex saddle-point method. We compare the instantaneous momentum at the moment of tunneling and the tunneling distances over a range of Keldysh parameters. Our results demonstrate that for nonadiabatic tunneling, tunneling ionization away from Γ point is possible. When this happens the electron has a nonzero initial velocity when it emerges in the conduction band. Moreover, consistent with atomic tunneling, a reduced tunneling distance as compared to the quasi-static case is found. Our results provide remarkable insight into the basic physics governing the sub-cycle electron tunneling dynamics with significant implications for understanding subsequent strong-field nonlinear phenomena in solids.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.521207DOI Listing

Publication Analysis

Top Keywords

tunneling dynamics
16
tunneling
13
dynamics solids
12
tunneling ionization
12
nonadiabatic tunneling
12
strong-field tunneling
8
nonlinear phenomena
8
tunneling tunneling
8
sub-cycle strong-field
4
dynamics
4

Similar Publications

Enhanced Giant Ferroelectric Tunneling Electroresistance in 2D Ruddlesden-Popper Oxides.

ACS Nano

September 2025

Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China.

Ferroelectric tunnel junctions (FTJs) based on ferroelectric switching and quantum tunneling effects with thickness down to a few unit cells have been explored for applications of two-dimensional (2D) electronic devices in data storage and neural networks. As a key performance indicator, the enhanced tunneling electrosistance (TER) ratio provides a broader dynamic range for precise modulation of synaptic weights, improving the stability and accuracy of neural networks. Herein, we report an observation of pronounced enhancement in the TER ratio by over 4 orders of magnitude through the fabrication of large-scale heterostructures combining bismuth ferrite with two-dimensional Ruddlesden-Popper oxide BiFeO.

View Article and Find Full Text PDF

Magnetic Excitations of a Nodally-Hybridized Heavy-Fermion SemiMetal: Application to CeNiSn.

J Phys Condens Matter

September 2025

Department of Physics, Temple University, Barton Hall, Philadelphia, PA 19122-6082, USA, Philadelphiaa, Pennsylvania, 19122, UNITED STATES.

We examine the magnetic excitations of an Anderson lattice model with a Vshaped pseudogap arising from nodal hybridization. The model produces a V-shaped pseudogap in the electronic density of states near the Fermi energy. It lies close to an antiferromagnetic quantum critical point and features lowdimensional Fermi surfaces, aligning with experimental observations of CeNiSn.

View Article and Find Full Text PDF

The proton (or hydrogen atom) transfer via tunneling plays a key role in chemical and biological processes. However, our understanding of multiple motion or proton concerted tunneling is very limited. Herein, we find that the weak dispersion interaction in the formic acid dimer (FAD)-fluorobenzene (PhF) system does not change the double proton transfer (DPT) barrier in FAD, but induces the FAD swing coupled with DPT.

View Article and Find Full Text PDF

Dual-Tendon Transfer for Chronic Extensor Pollicis Longus Ruptures: Augmented Extensor Indicis Proprius Transfer with Proximal EPL Stump Lengthening.

JBJS Essent Surg Tech

September 2025

Division of Hand and Reconstructive Microsurgery, Department of Orthopedics, Olympia Hospital & Research Centre, Trichy, Tamilnadu, India.

Background: Extensor indicis proprius (EIP) transfer augmented with proximal extensor pollicis longus (EPL) stump lengthening restores thumb extension and optimizes function in cases of chronic EPL tendon ruptures, which impair hand dexterity and fine motor skills. Traditional EIP-to-EPL transfers often disrupt the natural oblique course of the EPL around the Lister tubercle, leading to functional deficits. This dual-tendon transfer preserves anatomical alignment and improves thumb biomechanics, enhancing extension strength and the adduction moment arm at the carpometacarpal (CMC) joint.

View Article and Find Full Text PDF

Clinically, even in patients diagnosed with non-obstructive azoospermia, spermatogenesis may be present in some seminiferous tubules, which gives the patient hope of having biological offspring of his own. However, there is still a blank for high-precision detection technologies to support accurate diagnosis and effective treatment. In this work, we successfully developed a minimally invasive fine needle detection memristive device that features a structure composed of Ag/CH-MnO/FTO by utilizes the organic-inorganic heterojunction as functional layer.

View Article and Find Full Text PDF