98%
921
2 minutes
20
The mode of action of antibiotics can be broadly classified as bacteriostatic and bactericidal. The bacteriostatic mode leads to the arrested growth of the cells, while the bacteriocidal mode causes cell death. In this work, we report the applicability of deuterium stable isotope probing (DSIP) in combination with Raman spectroscopy (Raman DSIP) for discriminating the mode of action of antibiotics at the community level. a well-known model microbe, was used as an organism for the study. We optimized the concentration of deuterium oxide required for metabolic activity monitoring without compromising the microbial growth. Our findings suggest that changes in the intensity of the C-D band in the high-wavenumber region could serve as a quantifiable marker for determining the antibiotic mode of action. This can be used for early identification of the antibiotic's mode of action. Our results explore the new perspective that supports the utility of deuterium-based vibrational tags in the field of clinical spectroscopy. Understanding the antibiotic's mode of action on bacterial cells in a short and objective manner can significantly enhance the clinical management abilities of infectious diseases and may also help in personalized antimicrobial therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154948 | PMC |
http://dx.doi.org/10.1021/acsomega.4c01666 | DOI Listing |
Microbiol Res
September 2025
Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India. Electronic address:
J Ethnopharmacol
September 2025
Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. Electronic address:
Ethnopharmacological Relevance: The high mortality rate associated with severe influenza partly results from delayed initiation of antiviral therapy and subsequent cytokine storms. Jiuwei Qianghuo Decoction combined with Zhuye Shigao Decoction (JZF) has been clinically prescribed to prevent the progression to a more severe illness in influenza treatment. However, the precise mode of action and active components have not yet been elucidated.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, 310015 Hangzhou, China. Electronic address:
Methicillin-resistant Staphylococcus aureus (MRSA) is a highly virulent and drug-resistant pathogen frequently causing bacterial pneumonia. Currently, there are limited effective treatments available due to the rapidly evolving resistance of bacteria. Therefore, there is an urgent need to develop novel therapies that focus on host-pathogen interactions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Phase III, New Delhi, 110020, India; Infosys Centre for Artificial Intelligence, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), Okhla Phase III, New Delhi, 110020, In
Understanding the structural and functional diversity of toxin proteins is critical for elucidating macromolecular behavior, mechanistic variability, and structure-driven bioactivity. Traditional approaches have primarily focused on binary toxicity prediction, offering limited resolution into distinct modes of action of toxins. Here, we present MultiTox, an ensemble stacking framework for the classification of toxin proteins based on their molecular mode of action: neurotoxins, cytotoxins, hemotoxins, and enterotoxins.
View Article and Find Full Text PDFNat Prod Rep
September 2025
Centre for Superbug Solutions, Australia.
Covering: January 2014-June 2025. Previous review: , 2014, , 1612Natural products (NPs) have long been foundational in medicine, from ancient herbal remedies to the discovery of transformative drugs like morphine and quinine. The mid-20th century marked a 'golden age' for antibiotic discovery from natural sources, which then expanded into other therapeutic areas.
View Article and Find Full Text PDF