An updated patent review of stimulator of interferon genes agonists (2021 - present).

Expert Opin Ther Pat

State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Stimulator of Interferon Genes (STING) is an innate immune sensor. Activation of STING triggers a downstream response that results in the expression of proinflammatory cytokines (TNF-α, IL-1β) via nuclear factor kappa-B (NF-κB) or the expression of type I interferons (IFNs) via an interferon regulatory factor 3 (IRF3). IFNs can eventually result in promotion of the adaptive immune response including activation of tumor-specific CD8 T cells to abolish the tumor. Consequently, activation of STING has been considered as a potential strategy for cancer treatment.

Areas Covered: This article provides an overview on structures and pharmacological data of CDN-like and non-nucleotide STING agonists acting as anticancer agents (January 2021 to October 2023) from a medicinal chemistry perspective. The data in this review come from EPO, WIPO, RCSB PDB, CDDI.

Expert Opinion: In recent years, several structurally diverse STING agonists have been identified. As an immune enhancer, they are used in the treatment of tumors, which has received extensive attention from scientific community and pharmaceutical companies. Despite the multiple challenges that have appeared, STING agonists may offer opportunities for immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13543776.2024.2365409DOI Listing

Publication Analysis

Top Keywords

sting agonists
12
stimulator interferon
8
interferon genes
8
activation sting
8
sting
6
updated patent
4
patent review
4
review stimulator
4
agonists
4
genes agonists
4

Similar Publications

Background: Germinal matrix hemorrhage (GMH) is a common complication of premature infants with lifelong neurological consequences. Inflammation-mediated blood-brain barrier (BBB) disruption has been implicated as a main mechanism of secondary brain injury after GMH. The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a crucial role in inflammation, yet its involvement in GMH pathophysiology remains unclear.

View Article and Find Full Text PDF

The stimulator of interferon genes (STING) pathway is a central target in cancer immunotherapy, but current STING agonist therapies lack precision control, leading to suboptimal therapeutic outcomes and systematic adverse effects. Herein, we engineered a dual-locked immuno-polymeric nanoplatform (IPN) with precise spatiotemporal control over the release of STING agonists to enhance cancer immunotherapy. This platform, constructed from biocompatible poly(β-amino esters) (PBAE), incorporates the STING agonist (MSA-2) covalently linked via ester bonds, which is co-assembled with a sonosensitizer.

View Article and Find Full Text PDF

ENPP1 inhibitor with ultralong drug-target residence time as an innate immune checkpoint blockade cancer therapy.

Cell Rep Med

August 2025

Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Arc Institute, Palo Alto, CA 94304, USA. Electronic address:

Only one in five patients respond to immune checkpoint inhibitors, which primarily target adaptive immunity. Ectonucleotide pyrophosphatase/phophodiesterase 1 (ENPP1), the dominant hydrolase of 2'3'-cyclic-GMP-AMP (cGAMP) that suppresses downstream stimulator of interferon genes (STING) signaling, has emerged as a promising innate immunotherapy target. However, existing ENPP1 inhibitors have been optimized for prolonged systemic residence time rather than effective target inhibition within tumors.

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) is a major life-threatening event. In addition to neurological deficits, it can lead to long-term impairments of cognitive function. The vagus nerve (VN) provides a direct communication conduit between the central nervous system and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the vagus nerve (VNS) shows efficacy in ameliorating pathology in neurodegenerative diseases.

View Article and Find Full Text PDF

Combination of chemotherapy and cancer immunotherapy has shown substantial clinical promise. However, the immunosuppressive tumor microenvironment (TME) poses a critical barrier to this combination therapy. Here, a tumor lysosome-targeted immunomodulatory strategy based on a biomimetic nanoadjuvant is presented, which effectively overcomes the immunosuppressive TME and demonstrates enhanced therapeutic efficacy when combined with chemotherapy.

View Article and Find Full Text PDF