98%
921
2 minutes
20
Purpose Of Review: We aim to provide a comprehensive examination of the literature linking elevated rates of cardiovascular disease (CVD) in individuals of South Asian ethnicity with the severity of circulating vascular regenerative cell exhaustion.
Recent Findings: Recent findings have demonstrated reduced bioavailability of pro-vascular progenitor cell subsets in individuals with T2D and obesity. Depletion of vascular regenerative cells in the bone marrow - coupled with decreased mobilization into circulation - can negatively impact the capacity for vascular repair and exacerbate CVD risk. Several recent studies have established that although South Asian individuals possess similar inflammatory cell burden compared with other ethnicities, they exhibit marked decreases in vessel regenerative hematopoietic progenitor cells and monocyte subsets. Validation of these findings and investigation the functional capacity of vascular regenerative cell subsets to mediate vessel repair is highly warranted.
Summary: Vascular regenerative cells play a key role coordinating angiogenic and arteriogenic vessel remodelling. Recent studies have demonstrated that South Asian individuals with T2D show severe depletion in circulating vascular regenerative cell subsets. Because the reversal of vascular regenerative cell exhaustion by current glucose-lowering pharmaceutical agents has recently been documented, early intervention to bolster vascular regenerative cell content may prevent CVD co-morbidities in South Asian individuals with cardiometabolic disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/HCO.0000000000001159 | DOI Listing |
J Vis Exp
August 2025
Department of Oncology, Division of Pediatric Oncology and Institute for Cell Engineering, The Johns Hopkins University School of Medicine;
Human cord blood (CB) myeloid progenitor reprogramming to a high-fidelity human induced pluripotent stem cell (hiPSC) state can be achieved using non-integrating episomal vectors and stromal signals. These conventional, primed CB-hiPSC lines can subsequently be chemically reverted with high efficiencies to a blastomere-like Tankyrase/PARP Inhibitor-Regulated Naive Stem Cell (TIRN-SC) state with functional totipotency. PARP-regulated TIRN-SCs are human stem cells with high epigenetic plasticity, stable epigenomic imprints, and have greater differentiation potency than conventional, lineage-primed hiPSCs.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
September 2025
Arencibia Clinic, San Sebastian, Spain.
Follicular unit extraction (FUE) has become a leading technique in hair transplantation, yet optimal management of the donor area remains a clinical challenge. This systematic review analyzes intraoperative and postoperative interventions applied to the donor area in FUE hair transplantation, with a focus on both clinical outcomes and the cellular and molecular mechanisms involved in tissue repair, inflammatory response, and regenerative processes. A comprehensive literature search was conducted in PubMed and EMBASE (January 2000-June 2025), identifying clinical studies that evaluated donor area treatments and reported outcomes related to healing, inflammation, infection, and patient satisfaction.
View Article and Find Full Text PDFCase Rep Hematol
August 2025
Central Diagnostic Laboratories, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
Factor XIII (FXIII) deficiency is a rare coagulopathy with an estimated prevalence of approximately 1 in 1 to 2 million, affecting males and females with equal frequency. FXIII plays a critical role in hemostasis by stabilizing fibrin clots through covalent cross-linking of fibrin monomers, thereby conferring mechanical resistance and durability to the clot structure. Clinically, FXIII deficiency presents with a spectrum of hemorrhagic manifestations including bleeding from the umbilical cord, intracranial hemorrhage, recurrent miscarriages, menorrhagia, epistaxis, gingival bleeding, and poor wound healing.
View Article and Find Full Text PDFResearch (Wash D C)
September 2025
Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, China.
Collecting duct carcinoma (CDC) is a rare but aggressive form of renal cell carcinoma (RCC) that has limited understanding and an undefined systemic therapeutic regimen. Herein, we conducted a comprehensive proteogenomic analysis of CDC tumors and normal adjacent tissues to elucidate the biology of the disease. CDC exhibited high heterogeneity in tumor mutational burden, and enhanced ribosome biogenesis was the most striking malignant feature of CDC, even compared with other common kidney carcinomas.
View Article and Find Full Text PDFTurk J Biol
June 2025
Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, P.R. China.
Background: Abdominal aortic aneurysm (AAA), a gradual segmental dilatation of the abdominal aorta, is associated with a high mortality rate. The pathophysiological molecular mechanisms underlying AAA remain unclear. In recent years, changes in miRNA levels have been reported to be involved in the development and treatment of AAA.
View Article and Find Full Text PDF