Dynamic Cleavage-Remodeling of Covalent Organic Networks into Multidimensional Superstructures.

Adv Mater

College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P.R. China.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Superstructures with complex hierarchical spatial configurations exhibit broader structural depth than single hierarchical structures and the associated broader application prospects. However, current preparation methods are greatly constrained by cumbersome steps and harsh conditions. Here, for the first time, a concise and efficient thermally responsive dynamic synthesis strategy for the preparation of multidimensional complex superstructures within soluble covalent organic networks (SCONs) with tunable morphology from 0D hollow supraparticles to 2D films is presented. Mechanism study reveals the thermally responsive dynamic "cleavage-remodeling" characteristics of SCONs, synthesized based on the unique bilayer structure of (2.2)paracyclophane, and the temperature control facilitates the process from reversible solubility to reorganization and construction of superstructures. Specifically, during the process, the oil-water-emulsion two-phase interface can be generated through droplet jetting, leading to the preparation of 0D hollow supraparticles and other bowl-like complex superstructures with high yield. Additionally, by modulating the volatility and solubility of exogenous solvents, defect-free 2D films are prepared relying on an air-liquid interface. Expanded experiments further confirm the generalizability and scalability of the proposed dynamic "cleavage-remodeling" strategy. Research on the enrichment mechanism of guest iodine highlights the superior kinetic mass transfer performance of superstructural products compared to single-hierarchical materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202404446DOI Listing

Publication Analysis

Top Keywords

covalent organic
8
organic networks
8
thermally responsive
8
responsive dynamic
8
complex superstructures
8
hollow supraparticles
8
dynamic "cleavage-remodeling"
8
superstructures
5
dynamic
4
dynamic cleavage-remodeling
4

Similar Publications

To highlight the critical role of donor-type functional group in COF photocatalysts for sustainable HO production under natural air and without sacrificial donors, herein, we demonstrated that methoxy-functionalised COFs (TTT-DMTA) outperform hydroxy-functionalised counterparts (TTT-DHTA) for HO production.

View Article and Find Full Text PDF

Engineering Covalent and Noncovalent Interface Synergy in MXenes for Ultralong-life and Efficient Energy Storage.

Angew Chem Int Ed Engl

September 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.

MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.

View Article and Find Full Text PDF

Porous organic cages (POCs) have emerged as promising porous materials for a wide range of applications. However, their development is often limited by insufficient chemical stability and challenges in systematically functionalization. Herein, we reported the design and synthesis of a tetrazine-based POC (TC1) featuring rigid tetrahedral structure, prepared via a one-pot nucleophilic aromatic substitution reaction.

View Article and Find Full Text PDF

Chemically and Electromagnetically dual-enhanced COFs-Au@AgNPs SERS sensor integrated with deep learning for ultrasensitive detection of neonicotinoid pesticides.

Anal Chim Acta

November 2025

Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China.

Background: With the development of modern agriculture, neonicotinoid pesticides have been widely used due to their high efficiency and strong systemic properties. However, excessive use leads to the accumulation of residues in the food chain, threatening the ecosystem and human health. Pesticide residues are easily accumulated in oilseed crops and become concentrated during the edible oil refining process.

View Article and Find Full Text PDF

Ionic liquid-modified COF nanosphere for efficient extraction and sensitive detection of bisphenol pollutants.

Food Chem

September 2025

Henan International Joint Laboratory of Medicinal Plants Utilization, Colleage of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China. Electronic address:

The bisphenols (BPs) contaminants with distinctive endocrine-disrupting properties have garnered significant attention. A new analytical methodology was proposed for the sensitive detection of hazardous BPs in efficient and food safety monitoring. The approach utilizes an ionic liquid-modified covalent organic framework (SCOF-V/IL-5F) as a solid-phase extraction adsorbent to enrich harmful BPs.

View Article and Find Full Text PDF