Crystalline nanosheets of three-dimensional supramolecular frameworks with uniform thickness and high stability.

Chem Sci

Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Techn

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fabricating three dimensional (3D) supramolecular frameworks (SMFs) into stable crystalline nanosheets remains a great challenge due to the homogeneous and weak inter-building block interactions along 3D directions. Herein, crystalline nanosheets of a 3D SMF with a uniform thickness of 4.8 ± 0.1 nm immobilized with Pt nanocrystals on the surface (Q[8]/Pt NSs) were fabricated the solid-liquid reaction between cucurbit[8]uril/HPtCl single crystals and hydrazine hydrate with the help of gas and heat yielded during the reaction process. A series of experiments and theoretical calculations reveal the ultrahigh stability of Q[8]/Pt NSs due to the high density hydrogen bonding interaction among neighboring Q[8] molecules. This in turn endows Q[8]/Pt NSs with excellent photocatalytic and continuous thermocatalytic CO oxidation performance, representing the thus-far reported best Pt nano-material-based catalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110140PMC
http://dx.doi.org/10.1039/d4sc00656aDOI Listing

Publication Analysis

Top Keywords

crystalline nanosheets
12
q[8]/pt nss
12
supramolecular frameworks
8
uniform thickness
8
nanosheets three-dimensional
4
three-dimensional supramolecular
4
frameworks uniform
4
thickness high
4
high stability
4
stability fabricating
4

Similar Publications

Introduction: Manganese-oxidizing bacteria (MOB) play a critical role in converting soluble Mn(II) to insoluble Mn(III/IV) oxides, which have been widely applied for environmental remediation, particularly in heavy metal pollution control. Therefore, the discovery of novel MOB strains is of great significance for advancing pollution mitigation and ecosystem restoration.

Methods: In this study, a manganese-oxidizing bacterial strain was isolated from Mn-contaminated soil near an electroplating factory using selective LB medium supplemented with 10 mmol/L manganese chloride (MnCl), and the Leucoberbelin Blue (LBB) assay was employed to screen and identify strains with strong Mn(II)-oxidation ability.

View Article and Find Full Text PDF

Synergistic Coupling of Antenna Effect and Schottky Junction in Tb-Doped Covalent Organic Framework for Enhanced Electrochemiluminescence Sening of Isobutyryl Fentanyl.

Anal Chem

September 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.

Rational design of both mechanistic pathways and material compositions is essential to advance COF-based electrochemiluminescence (ECL) systems. In this study, aggregation-induced emission covalent organic framework (AIE-COF) nanoprobes with excellent ECL performance were developed based on Tb-functionalized covalent organic framework (Tb@A-COF). The Tb@A-COF system demonstrates enhanced ECL performance through synergistic integration of three complementary mechanisms: (1) (4',4',4',4'-(1,2-ethenediylidene)tetrakis [1,1'-biphenyl]-4-carboxaldehyde (ETBC) ligands function as antenna-like sensitizers that amplify luminescence intensity by 14.

View Article and Find Full Text PDF

Nickel cobalt carbonate hydroxide (NCCH) nanostructures with tunable morphologies, crystallite sizes, and defect structures are synthesized using a pH-modulated hydrothermal approach to explore the correlation between structural properties and electrochemical performance. Significant variations in crystallinity, surface area, chemical structure, and morphology are observed, as confirmed by synchrotron X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller analyses. Among the samples, the one synthesized at pH = 8.

View Article and Find Full Text PDF

Two-dimensional (2D) nanomaterials of quasicrystals are highly desirable as these materials may have novel physical laws and properties that the 2D crystalline materials do not have, since the crystal structures of quasicrystals are quite different from those of traditional crystals. However, producing quasicrystal nanosheets with high yield still remains challenging because quasicrystals are generally non-van der Waals (n-vdW) solids with strong chemical bonds between constituent atoms, which makes them difficult to exfoliate. Here, an efficient liquid-phase shear exfoliation (LPSE) method is developed to successfully produce atomically-thin AlCoNi quasicrystal nanosheets with a gram-scale collection.

View Article and Find Full Text PDF

The emergence of two-dimensional (2D) materials, particularly in the form of nanosheets, has attracted significant attention due to their extraordinary properties that differ markedly from those of their bulk counterparts. Among these materials, zinc oxide (ZnO) stands out for its highly tunable electronic, optical, and mechanical properties. However, understanding strain-induced phase transitions in few-layer systems remains a critical challenge, especially in nanoporous ZnO architectures.

View Article and Find Full Text PDF