Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There have been increasing efforts to develop prediction models supporting personalised detection, prediction, or treatment of ADHD. We overviewed the current status of prediction science in ADHD by: (1) systematically reviewing and appraising available prediction models; (2) quantitatively assessing factors impacting the performance of published models. We did a PRISMA/CHARMS/TRIPOD-compliant systematic review (PROSPERO: CRD42023387502), searching, until 20/12/2023, studies reporting internally and/or externally validated diagnostic/prognostic/treatment-response prediction models in ADHD. Using meta-regressions, we explored the impact of factors affecting the area under the curve (AUC) of the models. We assessed the study risk of bias with the Prediction Model Risk of Bias Assessment Tool (PROBAST). From 7764 identified records, 100 prediction models were included (88% diagnostic, 5% prognostic, and 7% treatment-response). Of these, 96% and 7% were internally and externally validated, respectively. None was implemented in clinical practice. Only 8% of the models were deemed at low risk of bias; 67% were considered at high risk of bias. Clinical, neuroimaging, and cognitive predictors were used in 35%, 31%, and 27% of the studies, respectively. The performance of ADHD prediction models was increased in those models including, compared to those models not including, clinical predictors (β = 6.54, p = 0.007). Type of validation, age range, type of model, number of predictors, study quality, and other type of predictors did not alter the AUC. Several prediction models have been developed to support the diagnosis of ADHD. However, efforts to predict outcomes or treatment response have been limited, and none of the available models is ready for implementation into clinical practice. The use of clinical predictors, which may be combined with other type of predictors, seems to improve the performance of the models. A new generation of research should address these gaps by conducting high quality, replicable, and externally validated models, followed by implementation research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609101PMC
http://dx.doi.org/10.1038/s41380-024-02606-5DOI Listing

Publication Analysis

Top Keywords

prediction models
28
risk bias
16
models
15
externally validated
12
prediction
9
models adhd
8
systematic review
8
clinical practice
8
models including
8
clinical predictors
8

Similar Publications

Background: Peripheral nerve injury commonly results in pain and long-term disability for patients. Recovery after in-continuity stretch or crush injury remains inherently unpredictable. However, surgical intervention yields the most favorable outcomes when performed shortly after injury.

View Article and Find Full Text PDF

Importance: Increasingly, strategies to systematically detect melanomas invoke targeted approaches, whereby those at highest risk are prioritized for skin screening. Many tools exist to predict future melanoma risk, but most have limited accuracy and are potentially biased.

Objectives: To develop an improved melanoma risk prediction tool for invasive melanoma.

View Article and Find Full Text PDF

Objective: To develop a novel prognostic scoring system for severe cytokine release syndrome (CRS) in patients with B-cell acute lymphoblastic leukemia (B-ALL) treated with anti-CD19 chimeric antigen receptor (CAR)-T-cell therapy, aiming to optimize risk mitigation strategies and improve clinical management.

Methods: This single-center retrospective cohort study included 125 B-ALL patients who received anti-CD19 CAR-T-cell therapy from January 2017 to October 2023. These cases were selected from a cohort of over 500 treated patients on the basis of the availability of comprehensive baseline data, documented CRS grading, and at least 3 months of follow-up.

View Article and Find Full Text PDF

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF