Introducing terminal alkyne groups at the reducing end of cellulose nanocrystals by aldimine condensation for further click reaction.

Int J Biol Macromol

College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, click reactions with cellulose nanocrystals (CNC) participation have gradually become a research hotspot. Carboxylamine condensation is the most used method to introduce terminal alkyne groups at the reducing end of CNC as reaction sites for click reactions. However, hydroxyl groups on CNC surface would be slightly oxidized during the carboxyamine condensation process, inducing the potential positions of introduced alkynes would be not only at the reducing end but also on CNC surface. Here, aldimine condensation was proposed to introduce terminal alkyne groups just at the reducing end of CNC, and a systematic comparison analysis was conducted with carboxylamine condensation. Firstly, the selectivity and extent of alkynylation were characterized by XPS and EA. Secondly, the end aldehyde content in these CNC samples was measured by the BCA method, which quantitatively explained the grafting efficiency of aldimine condensation and further verified its feasibility. Thirdly, the clickability of the modified CNC samples was confirmed through XPS analysis of the products after a pre-designed click reaction. In sum, aldimine condensation was proven to be a simple and effective strategy for introducing terminal alkyne groups at the reducing end of CNC, which could be used as reaction sites for further click reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.131983DOI Listing

Publication Analysis

Top Keywords

terminal alkyne
16
alkyne groups
16
groups reducing
16
aldimine condensation
16
reducing cnc
16
click reactions
12
introducing terminal
8
cellulose nanocrystals
8
click reaction
8
cnc
8

Similar Publications

CsCO-Catalyzed Decarboxylation/Cyclization to Access Functionalized 8-Hydroxyisoquinoline-1(2)-ones and 2-Pyridones Assisted by Microwave Irradiation.

J Org Chem

September 2025

National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, P. R. China.

We herein describe a novel decarboxylation/cyclization sequence involving a three-component reaction of dialkyl 2-(alkoxymethylene)malonate, amines, and terminal alkyne ester or internal alkyne ester catalyzed by CsCO under microwave conditions. These two types of highly chemo- and regioselective transformations were accomplished by different reaction channels to furnish a wide range of functionalized 8-hydroxyisoquinoline-1(2)-ones (21 examples) and 2-pyridones (18 examples) in good to excellent yields and might provide new opportunities for the discovery of N-heterocyclic drugs and other functional molecules.

View Article and Find Full Text PDF

Ligand-Enabled Cu-Catalyzed Deoxyalkynylation of α-Unfunctionalized Alcohols with Terminal Alkynes.

Angew Chem Int Ed Engl

September 2025

Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, and Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China.

Despite the widespread utility of transition metal-catalyzed cross-couplings in organic synthesis, the coupling of unactivated alkyl electrophiles remains challenging due to sluggish oxidative addition and competing side reactions. Here, we describe a general and practical copper-catalyzed radical deoxyalkynylation of α-unfunctionalized alcohols through a synergistic combination of Barton-McCombie deoxygenation and copper-catalyzed radical cross-coupling. Key to the success of this method lies in not only the development of rigid anionic multiple N,N,N-ligand to exert remarkable selectivity of highly reactive unactivated alkyl radicals, but also the selection of one suitable oxidant to suppress Glaser homocoupling and other side products.

View Article and Find Full Text PDF

Molecular engineering based on four-arm perylene diimide chromophores toward hypoxia-induced specific photothermal therapy.

J Mater Chem B

September 2025

Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Perylene diimide (PDI) radical anions have attracted increasing attention as hypoxia-responsive photothermal agents due to their strong near-infrared (NIR) absorption and efficient photothermal conversion. However, their biomedical application is often limited by aggregation-induced quenching and poor structural tunability. In this work, we report a rationally engineered four-arm PDI derivative (PDI-4Alky·4Cl) bearing terminal alkyne groups, which not only suppresses π-π stacking steric and electrostatic repulsion, but also serves as a versatile molecular scaffold for further functionalization.

View Article and Find Full Text PDF

Alkyne groups provide exceptional versatility for functionalization in macromolecular systems. However, the controlled anionic ring-opening polymerization (AROP) of epoxide monomers bearing terminal alkynes remains challenging due to the lability of alkynes under strongly basic conditions. Herein, we present a controlled AROP of glycidyl propargyl ether enabled by Lewis pair organocatalysis, employing a phosphazene base and triethylborane.

View Article and Find Full Text PDF

Regiodivergent Ligand-Controlled Cobalt-Catalyzed Reductive Hydroxymethylation of Alkynes with Aqueous Formaldehyde.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China.

Allylic alcohols are versatile and essential building blocks in synthetic chemistry, widely used for the preparation of complex molecules, pharmaceuticals, and materials. We report here a regiodivergent reductive hydroxymethylation of terminal alkynes with aqueous formaldehyde to prepare allylic alcohols enabled by visible light photoredox and cobalt dual catalysis. Using readily available, bulk, and cheap aqueous formaldehyde as a simple C1 source, this method allows for the selective production of both linear and branched allylic alcohols in one-step manner.

View Article and Find Full Text PDF