98%
921
2 minutes
20
Successively emerged high-throughput multitarget molecular detection methods bring significant development tides in chemical, biological, and environmental fields. However, several persistent challenges of intricate sample preparation, expensive instruments, and tedious and skilled operations still need to be further addressed. Here, we propose an automatic light-addressable photoelectrochemical (ALA-PEC) sensing platform for sensitive and selective detection of multitarget molecules. With Au nanoparticle-decorated TiO nanotube photonic crystals (Au-TiO NTPCs) as a photoelectrode and 8 kinds of antibiotics as target molecules, the ALA-PEC sensing system implements automatic detection of multimolecules in a short time with high sensitivity and good selectivity. Random samples with different amounts of antibiotics have been well-distinguished in the ALA-PEC system, and both the chemical components and concentrations have been well-illustrated in a pattern recognition model. It is worth noting that 8 samples are not the limit of the ALA-PEC sensing platform, which can be easily expanded to more complex detection arrays based on practical needs. The emerging ALA-PEC sensing platform provides a new solution for rapid screening and detection of multitarget and high-throughput substances and potentially brings the automatic, portable, sensitive, high-throughput, and cost-effective detection technique to an entire new realm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c01076 | DOI Listing |
ACS Sens
September 2025
College of Chemistry, Beijing Normal University, Beijing 100875, China.
Dopamine (DA) signaling is essential for neurodevelopment and is particularly sensitive to disruption during adolescence. Protein restriction (PR) can impair DA dynamics, yet mechanistic insights remain limited due to challenges in real-time neurochemical sensing. Here, we present aptCFE, a robust implantable aptamer-based sensor fabricated via a reagent-free, 3 min electrochemical conjugation (E-conjugation) using amine-quinone chemistry.
View Article and Find Full Text PDFNano Lett
September 2025
Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
Precise delivery of nanoliter-scale reagents is essential for high-throughput biochemical assays, yet existing platforms often lack real-time control and selective content fusion. Conventional methods rely on passive encapsulation or stochastic pairing, limiting both throughput and biochemical specificity. Here, we introduce an on-demand nanoliter delivery platform that seamlessly integrates electrical sensing, triggered droplet merging, and passive sorting in a single continuous flow.
View Article and Find Full Text PDFSci Adv
September 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Narrow-linewidth lasers are essential for coherent optical applications, including communications, metrology, and sensing. Although compact semiconductor lasers with narrow linewidths have been demonstrated, achieving high spectral purity generally necessitates passive external cavities based on photonic integrated circuits. This study presents a theoretical and experimental demonstration of a monolithic optical injection locking topological interface state extended (MOIL-TISE) laser.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
Embodied intelligence in soft robotics offers unprecedented capabilities for operating in uncertain, confined, and fragile environments that challenge conventional technologies. However, achieving true embodied intelligence-which requires continuous environmental sensing, real-time control, and autonomous decision-making-faces challenges in energy management and system integration. We developed deformation-resilient flexible batteries with enhanced performance under magnetic fields inherently present in magnetically actuated soft robots, with capacity retention after 200 cycles improved from 31.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
September 2025
Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Turkey.
Biodegradable biosensors represent a transformative advancement in sustainable sensing technology, offering an environmentally friendly and biocompatible alternative to traditional sensors. This review examines recent advancements, material innovations, degradation mechanisms, and application areas of biodegradable biosensors within the biomedical and environmental sectors. Natural and synthetic biodegradable polymers, such as chitosan, silk fibroin, alginate, PLA, PLGA, and PVA, are assessed for their functional contributions to sensing platforms.
View Article and Find Full Text PDF