Improving Microstructural Estimation in Time-Dependent Diffusion MRI With a Bayesian Method.

J Magn Reson Imaging

Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Accurately fitting diffusion-time-dependent diffusion MRI (t-dMRI) models poses challenges due to complex and nonlinear formulas, signal noise, and limited clinical data acquisition.

Purpose: Introduce a Bayesian methodology to refine microstructural fitting within the IMPULSED (Imaging Microstructural Parameters Using Limited Spectrally Edited Diffusion) model and optimize the prior distribution within the Bayesian framework.

Study Type: Retrospective.

Population: Involving 69 pediatric patients (median age 6 years, interquartile range [IQR] 3-9 years, 61% male) with 41 low-grade and 28 high-grade gliomas, of which 76.8% were identified within the brainstem or cerebellum.

Field Strength/sequence: 3 T, oscillating gradient spin-echo (OGSE) and pulsed gradient spin-echo (PGSE).

Assessment: The Bayesian method's performance in fitting cell diameter ( ), intracellular volume fraction ( ), and extracellular diffusion coefficient ( ) was compared against the NLLS method, considering simulated and experimental data. The tumor region-of-interest (ROI) were manually delineated on the b0 images. The diagnostic performance in distinguishing high- and low-grade gliomas was assessed, and fitting accuracy was validated against H&E-stained pathology.

Statistical Tests: T-test, receiver operating curve (ROC), area under the curve (AUC) and DeLong's test were conducted. Significance considered at P < 0.05.

Results: Bayesian methodology manifested increased accuracy with robust estimates in simulation (RMSE decreased by 29.6%, 40.9%, 13.6%, and STD decreased by 29.2%, 43.5%, and 24.0%, respectively for , , and compared to NLLS), indicating fewer outliers and reduced error. Diagnostic performance for tumor grade was similar in both methods, however, Bayesian method generated smoother microstructural maps (outliers ratio decreased by 45.3% ± 19.4%) and a marginal enhancement in correlation with H&E staining result (r = 0.721 for compared to r = 0.698 using NLLS, P = 0.5764).

Data Conclusion: The proposed Bayesian method substantially enhances the accuracy and robustness of IMPULSED model estimation, suggesting its potential clinical utility in characterizing cellular microstructure.

Evidence Level: 3 TECHNICAL EFFICACY: Stage 1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.29434DOI Listing

Publication Analysis

Top Keywords

diffusion mri
8
gradient spin-echo
8
improving microstructural
4
microstructural estimation
4
estimation time-dependent
4
diffusion
4
time-dependent diffusion
4
bayesian
4
mri bayesian
4
bayesian method
4

Similar Publications

Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.

View Article and Find Full Text PDF

The anterior commissure (AC) has an anterior and posterior limb. Despite comprehensive information about the posterior limb, there is limited and conflicting information about the anterior limb in the literature. We aimed to show the anatomical relationships of the AC with neighboring structures by using white matter microdissection and magnetic resonance (MR) tractography, primarily on the anterior limb of the AC.

View Article and Find Full Text PDF

MRI Assessment of Radiation-Induced Delayed-Onset Microstructural Gray Matter Changes in Nasopharyngeal Carcinoma Patients.

J Magn Reson Imaging

September 2025

School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.

Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.

Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).

Study Type: Prospective, longitudinal.

View Article and Find Full Text PDF

Unlabelled: Leptomeningeal metastasis (LM) is a severe complication of solid malignancies, including lung adenocarcinoma, characterized by poor prognosis and diagnostic challenges. This study assesses whether curvilinear peri-brainstem hyperintense signals on MRI are a characteristic feature of LM in lung adenocarcinoma patients.

Methods: This retrospective study analyzed data from multiple centers, encompassing lung adenocarcinoma patients with peri-brainstem curvilinear hyperintense signals on MRI between January 2016 and March 2022.

View Article and Find Full Text PDF

Introduction: Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is a neuropsychiatric disorder with additional psychiatric features caused by NMDA-R immunoglobulin G (IgG) antibodies in cerebrospinal fluid (CSF). This report presents the follow-up of a patient in whom we assumed mild NMDA-R encephalitis in the first psychotic episode.

Case Study: A patient with a prior episode of an acute polymorphic psychotic syndrome relapsed five and a half years later following a severe COVID-19 infection.

View Article and Find Full Text PDF