Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study intends to use the basic information and blood routine of schistosomiasis patients to establish a machine learning model for predicting liver fibrosis. We collected medical records of Schistosoma japonicum patients admitted to a hospital in China from June 2019 to June 2022. The method was to screen out the key variables and six different machine learning algorithms were used to establish prediction models. Finally, the optimal model was compared based on AUC, specificity, sensitivity and other indicators for further modeling. The interpretation of the model was shown by using the SHAP package. A total of 1049 patients' medical records were collected, and 10 key variables were screened for modeling using lasso method, including red cell distribution width-standard deviation (RDW-SD), Mean corpuscular hemoglobin concentration (MCHC), Mean corpuscular volume (MCV), hematocrit (HCT), Red blood cells, Eosinophils, Monocytes, Lymphocytes, Neutrophils, Age. Among the 6 different machine learning algorithms, LightGBM performed the best, and its AUCs in the training set and validation set were 1 and 0.818, respectively. This study established a machine learning model for predicting liver fibrosis in patients with Schistosoma japonicum. The model could help improve the early diagnosis and provide early intervention for schistosomiasis patients with liver fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106071PMC
http://dx.doi.org/10.1038/s41598-024-62521-1DOI Listing

Publication Analysis

Top Keywords

machine learning
20
liver fibrosis
16
learning model
12
model predicting
12
predicting liver
12
schistosoma japonicum
12
blood routine
8
establish machine
8
fibrosis patients
8
patients schistosoma
8

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF