Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A growing number of studies apply deep neural networks (DNNs) to recordings of human electroencephalography (EEG) to identify a range of disorders. In many studies, EEG recordings are split into segments, and each segment is randomly assigned to the training or test set. As a consequence, data from individual subjects appears in both the training and the test set. Could high test-set accuracy reflect data leakage from subject-specific patterns in the data, rather than patterns that identify a disease? We address this question by testing the performance of DNN classifiers using segment-based holdout (in which segments from one subject can appear in both the training and test set), and comparing this to their performance using subject-based holdout (where all segments from one subject appear exclusively in either the training set or the test set). In two datasets (one classifying Alzheimer's disease, and the other classifying epileptic seizures), we find that performance on previously-unseen subjects is strongly overestimated when models are trained using segment-based holdout. Finally, we survey the literature and find that the majority of translational DNN-EEG studies use segment-based holdout. Most published DNN-EEG studies may dramatically overestimate their classification performance on new subjects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099244PMC
http://dx.doi.org/10.3389/fnins.2024.1373515DOI Listing

Publication Analysis

Top Keywords

test set
16
training test
12
segment-based holdout
12
data leakage
8
holdout segments
8
segments subject
8
subject appear
8
dnn-eeg studies
8
studies
5
set
5

Similar Publications

Utility and performance of cerebrospinal fluid cytology in discriminating central nervous system infections and brain tumors.

J Neurooncol

September 2025

Department of Neurology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, China.

Background And Objective: Differentiating central nervous system infections (CNSIs) from brain tumors (BTs) is difficult due to overlapping features and the limited individual indicators, and cerebrospinal fluid (CSF) cytology remains underutilized. To improve differential diagnosis, we developed a model based on 9 early, cost-effective cerebrospinal fluid parameters, including CSF cytology.

Methods: Patients diagnosed with CNSIs or BTs at Xiangya Hospital of Central South University between October 1st, 2017 and March 31st, 2024 were enrolled and divided into the training set and the test set.

View Article and Find Full Text PDF

Use of progestin-only drospirenone-based pills in hyperandrogenic women with polycystic ovary syndrome.

Arch Gynecol Obstet

September 2025

Department of Women's and Children's Health Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, L.Go Agostino Gemelli, 8, 00168, Rome, Italy.

Purpose: Polycystic ovarian syndrome (PCOS) is a common endocrine-metabolic disorder affecting about 10% of reproductive-age women. Characterized by hyperandrogenism and ovulatory dysfunction, PCOS often involves metabolic features due to insulin resistance. Traditional treatment with combined oral contraceptive pills (COCP) effectively manages hyperandrogenism and menstrual irregularities.

View Article and Find Full Text PDF

Identification and prioritization of gene sets associated with schizophrenia risk by network analysis.

Psychopharmacology (Berl)

September 2025

Institute of Cardiovascular Research, Sleep Medical Center, Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.

Rationale: Genome-wide association studies (GWASs) are used to identify genetic variants for association with schizophrenia (SCZ) risk; however, each GWAS can only reveal a small fraction of this association.

Objectives: This study systematically analyzed multiple GWAS data sets to identify gene subnetwork and pathways associated with SCZ.

Methods: We identified gene subnetwork using dmGWAS program by combining SCZ GWASs and a human interaction network, performed gene-set analysis to test the association of gene subnetwork with clinical symptom scores and disease state, meanwhile, conducted spatiotemporal and tissue-specific expression patterns and cell-type-specific analysis of genes in the subnetwork.

View Article and Find Full Text PDF

Accelerating Transition State Search and Ligand Screening for Organometallic Catalysis with Reactive Machine Learning Potential.

J Chem Theory Comput

September 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Organometallic catalysis lies at the heart of numerous industrial processes that produce bulk and fine chemicals. The search for transition states and screening for organic ligands are vital in designing highly active organometallic catalysts with efficient reaction kinetics. However, identifying accurate transition states necessitates computationally intensive quantum chemistry calculations.

View Article and Find Full Text PDF

Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).

View Article and Find Full Text PDF