Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In controlled environment agriculture, customized light treatments using light-emitting diodes are crucial to improving crop yield and quality. Red (R; 600-700 nm) and blue light (B; 400-500 nm) are two major parts of photosynthetically active radiation (PAR), often preferred in crop production. Far-red radiation (FR; 700-800 nm), although not part of PAR, can also affect photosynthesis and can have profound effects on a range of morphological and physiological processes. However, interactions between different red and blue light ratios (R:B) and FR on promoting yield and nutritionally relevant compounds in crops remain unknown. Here, lettuce was grown at 200 µmol m s PAR under three different R:B ratios: R:B (12.5% blue), R:B (25% blue), and R:B (40% blue) without FR. Each treatment was also performed with supplementary FR (50 µmol m s; R:B+FR, R:B+FR, and R:B+FR). White light with and without FR (W and W+FR) were used as control treatments comprising of 72.5% red, 19% green, and 8.5% blue light. Increasing the R:B ratio from R:B to R:B, there was a decrease in fresh weight (20%) and carbohydrate concentration (48% reduction in both sugars and starch), whereas pigment concentrations (anthocyanins, chlorophyll, and carotenoids), phenolic compounds, and various minerals all increased. These results contrasted the effects of FR supplementation in the growth spectra; when supplementing FR to different R:B backgrounds, we found a significant increase in plant fresh weight, dry weight, total soluble sugars, and starch. Additionally, FR decreased concentrations of anthocyanins, phenolic compounds, and various minerals. Although blue light and FR effects appear to directly contrast, blue and FR light did not have interactive effects together when considering plant growth, morphology, and nutritional content. Therefore, the individual benefits of increased blue light fraction and supplementary FR radiation can be combined and used cooperatively to produce crops of desired quality: adding FR increases growth and carbohydrate concentration while increasing the blue fraction increases nutritional value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091871PMC
http://dx.doi.org/10.3389/fpls.2024.1383100DOI Listing

Publication Analysis

Top Keywords

blue light
24
blue
10
light
9
rb+fr rb+fr
8
fresh weight
8
carbohydrate concentration
8
sugars starch
8
concentrations anthocyanins
8
phenolic compounds
8
compounds minerals
8

Similar Publications

5-Aminolevulinic acid-mediated photodynamic therapy improves scar healing of laryngeal wounds in rats.

Lasers Med Sci

September 2025

Department of Otolaryngology Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China.

To evaluated the efficacy of photodynamic therapy (PDT) in improving laryngeal mucosal wound scar healing in vivo and investigated its underlying mechanisms. Laryngeal mucosal wounds were induced in Sprague-Dawley rats. Two weeks post-injury, PDT was administered via intraperitoneal injection of 100 mg/kg 5-aminolevulinic acid (5-ALA) and 635-nm red laser irradiation at varying energy doses (15, 30, and 45 J/cm²).

View Article and Find Full Text PDF

Photoremovable protecting groups (PRPGs) enable precise spatiotemporal control over molecular release and functional activation. Recent advances have introduced wavelength-selective systems for sequential deprotection, broadening applications in drug delivery, material synthesis, and photopolymerization. In parallel, PRPGs play a crucial role in photobase generators (PBGs) and photoacid generators (PAGs), enabling oxygen-tolerant, spatially controlled polymerization and depolymerization through light-induced base and acid release.

View Article and Find Full Text PDF

Light-activated antimicrobial polymers with citronellol-enhanced bacterial accumulation for on-demand disinfection.

J Mater Chem B

September 2025

School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.

Antibacterial photodynamic therapy offers a promising approach for combating both susceptible and multidrug-resistant pathogens. However, conventional photosensitizers have limitations in terms of poor binding specificity and weak penetration for pathogens. In this study, we developed synergistic photobactericidal polymers that integrate hydrophilic toluidine blue O (TBO) with the lipophilic penetration enhancer citronellol (CT).

View Article and Find Full Text PDF

Microalgae and their rich nutrient content are increasingly recognized as a sustainable food source. Microalgal macular pigment (MP), composed of zeaxanthin and lutein, is densely concentrated in the retinal macula of eyes and is frequently utilized in eye health maintenance. However, as a sustainable food ingredient, the food safety and functionality of MP need further investigated.

View Article and Find Full Text PDF

Artificial light at night disrupts fertility in Drosophila melanogaster.

Comp Biochem Physiol C Toxicol Pharmacol

September 2025

Occupational Health, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy. Electronic address:

Artificial light at night (ALAN) can disrupt numerous biological processes, and is increasingly studied in animal models. Here, we evaluated the impact of red and blue ALAN on Drosophila melanogaster, focusing on fertility, development, circadian rhythms, and gene expression. All results were compared to those of a control group maintained under a 12 h white light/12 h dark cycle.

View Article and Find Full Text PDF