Publications by authors named "Sarah Courbier"

In controlled environment agriculture, customized light treatments using light-emitting diodes are crucial to improving crop yield and quality. Red (R; 600-700 nm) and blue light (B; 400-500 nm) are two major parts of photosynthetically active radiation (PAR), often preferred in crop production. Far-red radiation (FR; 700-800 nm), although not part of PAR, can also affect photosynthesis and can have profound effects on a range of morphological and physiological processes.

View Article and Find Full Text PDF

Plants detect neighboring competitors through a decrease in the ratio between red and far-red light (R:FR). This decreased R:FR is perceived by phytochrome photoreceptors and triggers shade avoidance responses such as shoot elongation and upward leaf movement (hyponasty). In addition to promoting elongation growth, low R:FR perception enhances plant susceptibility to pathogens: the growth-defense tradeoff.

View Article and Find Full Text PDF

Plants experience a decrease in the red:far-red light ratio (R:FR) when grown at high planting density. In addition to eliciting the shade avoidance response, low R:FR also enhances plant susceptibility to pathogens via modulation of defense hormone-mediated responses. However, other mechanisms, also affected by low R:FR, have not been considered as potential components in FR-induced susceptibility.

View Article and Find Full Text PDF

Plants growing at high density are in constant competition for light with each other. The shade avoidance syndrome (SAS) is an effective way to escape neighboring vegetation. Even though the molecular mechanisms regulating SAS have been long studied, interactions between light and other environmental signaling pathways have only recently received attention.

View Article and Find Full Text PDF

Background: Oomycetes are a group of filamentous eukaryotic microorganisms that have colonized all terrestrial and oceanic ecosystems, and they include prominent plant pathogens. The Aphanomyces genus is unique in its ability to infect both plant and animal species, and as such exemplifies oomycete versatility in adapting to different hosts and environments. Dissecting the underpinnings of oomycete diversity provides insights into their specificity and pathogenic mechanisms.

View Article and Find Full Text PDF