Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Magnetic Particle Imaging (MPI) is a radiation-free tracer-based imaging technology that visualizes the spatial distribution of superparamagnetic iron oxide nanoparticles. Conventional spatial encoding methods in MPI rely on a gradient magnetic field with a constant gradient strength to generate a field-free point or line for spatial scanning. However, increasing the gradient strength can enhance theoretical spatial resolution but also lead to a decrease in the Signal-to-Noise Ratio (SNR) and sensitivity of the imaging system. This poses a technical challenge in balancing spatial resolution and sensitivity, necessitating intricate hardware design.

Methods: To address this, we present a Space-Specific Mixing Excitation (SSME) technique for achieving high-SNR spatial encoding in MPI. By utilizing a dual-frequency excitation magnetic field with a non-homogeneous field strength, magnetic particles at each position generate unique intermodulation responses. By performing multi-channel acquisitions across the entire field of view, high SNR MPI signals can be acquired. When combined with reconstruction techniques based on system matrix, multi-dimensional SSME-MPI can be achieved.

Results: The effectiveness of the proposed method was validated through phantom and in vivo imaging experiments. The results demonstrate significant improvements in sensitivity (3.6-fold improvement) and spatial resolution (better than 1 mm) without any hardware modifications.

Conclusion: These findings demonstrate the capability of SSME to enhance both the spatial resolution and sensitivity of MPI.

Significance: This method provides a solution to the ongoing challenge of balancing spatial resolution and sensitivity in MPI, potentially facilitating the implementation of MPI in a wider range of medical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2024.3400274DOI Listing

Publication Analysis

Top Keywords

spatial resolution
20
spatial encoding
12
resolution sensitivity
12
spatial
10
space-specific mixing
8
mixing excitation
8
high-snr spatial
8
magnetic particle
8
particle imaging
8
magnetic field
8

Similar Publications

Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .

View Article and Find Full Text PDF

Real-Space Quantitative Molecular Analysis at Single-Molecule Resolution.

J Am Chem Soc

September 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu P. R. China.

Advances in molecular analysis and characterization techniques should revolutionize the methods for scientific exploration across physics, chemistry, and biology, fundamentally overturning our understanding of interactions and processes that govern molecular behavior at the microscopic level. Currently, the absence of a molecular analysis method that can both quantify molecules and achieve single-molecule spatial resolution hinders our study of complex molecular systems in sorption and catalysis. Here, we propose a quantitative analysis strategy for small molecules confined in ZSM-5, a zeolite material extensively used in catalysis and gas separation, based on low-dose transmission electron microscopy.

View Article and Find Full Text PDF

Understanding the rate and nature of adaptation is crucial for managing biodiversity across our changing landscapes. This perspective synthesizes insights from resistance evolution - a case of rapid, repeated adaptation to extreme human-mediated selection - to reveal how adaptive genetic architectures determine and feedback with evolutionary dynamics. Recent population genomic and quantitative genetic approaches have demonstrated that the extent of genetic parallelism and reliance on de novo vs standing genetic variation can vary with the complexity of genetic architectures.

View Article and Find Full Text PDF

Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.

View Article and Find Full Text PDF

5-Ethynyl-2'-deoxyuridine (EdU) has revolutionized DNA replication and cell cycle analyses through fast, efficient click chemistry detection. However, commercial EdU kits suffer from high costs, proprietary formulations, limited antibody multiplexing capabilities, and difficulties with larger biological specimens. Here, we present OpenEMMU (Open-source EdU Multiplexing Methodology for Understanding DNA replication dynamics), an optimized, affordable, and user-friendly click chemistry platform utilizing off-the-shelf reagents.

View Article and Find Full Text PDF