Inducing ubiquitination and degradation of TrxR1 protein by LW-216 promotes apoptosis in non-small cell lung cancer via triggering ROS production.

Neoplasia

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China. Electronic address:

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thioredoxin reductases are frequently overexpressed in various solid tumors as a protective mechanism against heightened oxidative stress. Inhibitors of this system, such as Auranofin, are effective in eradicating cancer cells. However, the clinical significance of thioredoxin reductase 1 (TrxR1) in lung cancer, as well as the potential for its antagonist as a treatment option, necessitated further experimental validation. In this study, we observed significant upregulation of TrxR1 specifically in non-small cell lung cancer (NSCLC), rather than small cell lung cancer. Moreover, TrxR1 expression exhibited associations with survival rate, tumor volume, and histological classification. We developed a novel TrxR1 inhibitor named LW-216 and assessed its antitumor efficacy in NSCLC. Our results revealed that LW-216 is effectively bound with intracellular TrxR1 at sites R371 and G442, facilitating TrxR1 ubiquitination and suppressing TrxR1 expression, while not affecting TrxR2 expression. Treatment of LW-216-induced DNA damage and cell apoptosis in NSCLC cells through the generation of reactive oxygen species (ROS). Importantly, supplementation with N-acetylcysteine (NAC) or ectopic TrxR1 expression reversed LW-216-induced apoptosis. Furthermore, LW-216 displayed potent tumor growth inhibition in NSCLC cell-implanted mice, reducing TrxR1 expression in xenografts. Remarkably, LW-216 exhibited superior antitumor activity compared to Auranofin in vivo. Collectively, our research provides compelling evidence supporting the potential of targeting TrxR1 by LW-216 as a promising therapeutic strategy for NSCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104261PMC
http://dx.doi.org/10.1016/j.neo.2024.101004DOI Listing

Publication Analysis

Top Keywords

lung cancer
16
trxr1 expression
16
cell lung
12
trxr1
11
non-small cell
8
lw-216
6
cancer
5
nsclc
5
expression
5
inducing ubiquitination
4

Similar Publications

Single-Cell RNA Sequencing Reveals Potential Mechanism of RUNX3 Reshaping Tumor Microenvironment in Non-small-cell Lung Cancer.

Ann Surg Oncol

September 2025

Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China.

Background: RUNX3 acts as a tumor suppressor gene in non-small-cell lung cancer (NSCLC), yet its specific biological mechanism is still unclear. This study aimed to uncover tumor microenvironment (TME) changes in NSCLC with varying RUNX3 expression statuses through single-cell RNA sequencing.

Patients And Methods: In total, seven patients with NSCLC with detailed pathological data were involved, with three both paracancerous and cancerous tissue samples.

View Article and Find Full Text PDF

Objectives: To quantify intraoperative pulmonary arterial catheter (PAC) use during cardiac surgery and identify hospital-, anesthesiologist-, and patient-level factors associated with PAC utilization.

Design: A cross-sectional, observational study using generalized logistic mixed models to examine variations in PAC use.

Setting: Fifty-three US academic hospitals participating in the Multicenter Perioperative Outcomes Group (MPOG) national registry PARTICIPANTS: 145,343 adult patients undergoing cardiac surgery between January 1, 2016, and December 31, 2022.

View Article and Find Full Text PDF

KRAS mutations in Non-Small Cell Lung Cancer: translational aspects, current therapies and challenges for future research.

Crit Rev Oncol Hematol

September 2025

Unit of Cancer Genetics, Institute of Genetic & Biomedical Research (IRGB), National Research Council (CNR), Traversa La Crucca n. 3, 07100, Sassari, Italy; Immuno-Oncology & Targeted Cancer Biotherapies, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy. Electronic address: gpalmier

Mutations in the KRAS gene are prominent oncogenic drivers in non-small cell lung cancer (NSCLC), with multiple pathophysiological, clinical and prognostic implications. Although historically considered an "undruggable" target, recent research led to the development of specific KRAS-G12C inhibitors, like sotorasib and adagrasib which are currently approved for clinical use in patients affected by advanced NSCLC. However, the clinical utility of these drugs is often limited by resistance development through several biological mechanisms, including additional KRAS mutations, activation of compensatory pathways and metabolic reprogramming.

View Article and Find Full Text PDF

Background: Up to 70% of lung cancer may be malnourished. This study aims to examine the effects of malnutrition on outcomes in lung cancer patients undergoing resection using modified GLIM criteria.

Methods: The study utilized the mGLIM criteria to identify malnourished patients.

View Article and Find Full Text PDF

Purpose: To examine the effectiveness of virtual reality (VR)-guided imagery relaxation (VRGI) intervention in reducing anxiety among lung cancer surgery patients.

Methods: A randomized clinical trial was conducted at the Fourth Affiliated Hospital of Hebei Medical University (Shijiazhuang, Hebei, China) to recruit patients scheduled for their first elective endoscopic lung cancer surgery under general anesthesia between December 2023 and March 2024. Patients were randomly assigned in a 1:1 ratio to either the control group, receiving routine treatment and staged care in thoracic surgery, or the experimental group, receiving VRGI intervention in addition to the control group's protocol.

View Article and Find Full Text PDF