Quantitative Optical Redox Imaging of Melanoma Xenografts with Different Metastatic Potentials.

Cancers (Basel)

Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To develop imaging biomarkers for tumors aggressiveness, our previous optical redox imaging (ORI) studies of the reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp, containing flavin adenine dinucleotide, i.e., FAD) in tumor xenografts of human melanoma associated the high optical redox ratio (ORR = Fp/(Fp + NADH)) and its heterogeneity to the high invasive/metastatic potential, without having reported quantitative results for NADH and Fp. Here, we implemented a calibration procedure to facilitate imaging the nominal concentrations of tissue NADH and Fp in the mouse xenografts of two human melanoma lines, an indolent less metastatic A375P and a more metastatic C8161. Images of the redox indices (NADH, Fp, ORR) revealed the existence of more oxidized areas (OAs) and more reduced areas (RAs) within individual tumors. ORR was found to be higher and NADH lower in C8161 compared to that of A375P xenografts, both globally for the whole tumors and locally in OAs. The ORR in the OA can differentiate xenografts with a higher statistical significance than the global averaged ORR. H&E staining of the tumors indicated that the redox differences we identified were more likely due to intrinsically different cell metabolism, rather than variations in cell density.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11083304PMC
http://dx.doi.org/10.3390/cancers16091669DOI Listing

Publication Analysis

Top Keywords

optical redox
12
redox imaging
8
adenine dinucleotide
8
xenografts human
8
human melanoma
8
nadh
6
redox
5
xenografts
5
orr
5
quantitative optical
4

Similar Publications

Patient-derived cancer organoids (PDCOs) are a valuable model to recapitulate human disease in culture with important implications for drug development. However, current methods for rapidly and reproducibly assessing PDCOs are limited. Label-free imaging methods are a promising tool to measure organoid level heterogeneity and rapidly screen drug response in PDCOs.

View Article and Find Full Text PDF

Introduction: The procedural complexity and time-consuming of conventional pesticide residue detection methods in traditional Chinese medicines (TCMs) significantly impeded their application in modern systems. To address this, this study presented an innovative dual-mode sensor driven by Cu/Cu redox-cycling, which achieved efficient signal transduction from enzyme inhibition to optical response for rapid acetylcholinesterase (AChE) activity and organophosphorus pesticide (OP) residue detection.

Methods: The AB-Cu NPs sensor, a dynamic redox-responsive system, was constructed via coordination-driven assembly of Azo-Bodipy 685 (AB 685) and Cu.

View Article and Find Full Text PDF

Facet-dependent Heterogeneous Fenton Reaction Mechanisms on Hematite Nanoparticles for (Photo)catalytic Degradation of Organic Dyes.

Adv Sci (Weinh)

September 2025

Physical & Computational Science Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.

Although heterogeneous photo-Fenton reactions on nanoparticulate iron oxides effectively degrade organic pollutants, the underlying surface mechanisms remain debated. Here, we demonstrate how these pathways are modulated by specific hematite crystal facets. To investigate the influence of particle surface structure, methylene blue (MB) adsorption and photodegradation kinetics are examined using facet-engineered hematite nanoparticles with distinct exposed facets.

View Article and Find Full Text PDF

This study introduces the HydroTherm-Flow Smart Window (HTF Window), the first groundbreaking integration of thermochromic windows and Fe-Cr redox flow batteries (Fe-Cr RFBs), achieving dual functionalities of dynamic solar modulation-via dual-band (visible + near-infrared, NIR) modulation-and high-efficiency energy storage in a single component. Leveraging tunable hydroxypropyl cellulose (HPC) hydrogels, it enables ultrafast optical switching and autonomous nighttime opacity, overcoming the slow response and privacy limitations of conventional thermochromic systems. By repurposing the window as a compact electrolyte reservoir, it reduces the RFB spatial footprint while enhancing ionic conductivity by 30% via hydrogel "ion highways," achieving 77% energy efficiency with a 40% reduction in the solar heat gain coefficient.

View Article and Find Full Text PDF

A smart textile fabric-based optical nano-biosensor for hydrogen peroxide and glucose monitoring.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, 54000, Pakistan. Electronic address:

The incorporation of nanomaterials into smart flexible interfaces is a developing requirement for real-time diagnostics applications. In this work, we report a novel optical fabric-based sensor for the analysis of glucose and hydrogen peroxide (HO), addressing critical needs of healthcare, industrial safety, and environmental analysis. In contrast to traditional rigid substrates, we utilized cotton fabric as a porous and flexible sensing platform, immobilizing cerium oxide nanoparticles (CeO₂-NPs) using hydrogel.

View Article and Find Full Text PDF