98%
921
2 minutes
20
Ultrafast imaging can capture the dynamic scenes with a nanosecond and even femtosecond temporal resolution. Complementarily, phase imaging can provide the morphology, refractive index, or thickness information that intensity imaging cannot represent. Therefore, it is important to realize the simultaneous ultrafast intensity and phase imaging for achieving as much information as possible in the detection of ultrafast dynamic scenes. Here, we report a single-shot intensity- and phase-sensitive compressive sensing-based coherent modulation ultrafast imaging technique, shortened as CS-CMUI, which integrates coherent modulation imaging, compressive imaging, and streak imaging. We theoretically demonstrate through numerical simulations that CS-CMUI can obtain both the intensity and phase information of the dynamic scenes with ultrahigh fidelity. Furthermore, we experimentally build a CS-CMUI system and successfully measure the intensity and phase evolution of a multimode Q-switched laser pulse and the dynamical behavior of laser ablation on an indium tin oxide thin film. It is anticipated that CS-CMUI enables a profound comprehension of ultrafast phenomena and promotes the advancement of various practical applications, which will have substantial impact on fundamental and applied sciences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.132.173801 | DOI Listing |
Phys Rev Lett
August 2025
ETH Zürich, Photonics Laboratory, CH-8093 Zürich, Switzerland.
Matter waves have been observed in double-slit experiments with microscopic objects, such as atoms or molecules. The wave function describing the motion of these objects must extend over a distance comparable to the slit separation, much larger than the characteristic size of the objects. Preparing such states for more massive objects, such as mechanical oscillators, remains an outstanding challenge.
View Article and Find Full Text PDFSci Adv
September 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Narrow-linewidth lasers are essential for coherent optical applications, including communications, metrology, and sensing. Although compact semiconductor lasers with narrow linewidths have been demonstrated, achieving high spectral purity generally necessitates passive external cavities based on photonic integrated circuits. This study presents a theoretical and experimental demonstration of a monolithic optical injection locking topological interface state extended (MOIL-TISE) laser.
View Article and Find Full Text PDFChem Soc Rev
September 2025
State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
Understanding the excited-state dynamics of atomically precise coinage metal nanoclusters (CMNCs) is pivotal for elucidating their photoluminescence (PL) mechanisms and rationally tuning emission properties-particularly in the near-infrared (NIR) region, where CMNC-based nanomaterials have tremendous potential for biomedical and optoelectronic applications. This review presents a systematic and comprehensive account of recent advances in investigating the excited-state dynamics and PL mechanisms of NIR-emitting CMNCs with atomic precision, leveraging the synergistic integration of time-resolved spectroscopy and time-dependent density functional theory (TD-DFT) calculations. Distinct from previous reviews that offer a broad survey of CMNC properties, the present review focuses specifically on intrinsic factors, highlighting molecular vibrational features and electronic structure modulation as key determinants of NIR emission.
View Article and Find Full Text PDFChaos
September 2025
Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil.
Neuronal heterogeneity, characterized by a multitude of spiking neuronal patterns, is a widespread phenomenon throughout the nervous system. In particular, the brain exhibits strong variability among inhibitory neurons. Despite the huge neuronal heterogeneity across brain regions, which in principle could decrease synchronization due to differences in intrinsic neuronal properties, cortical areas coherently oscillate during various cognitive tasks.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Chemistry, Institute for Quantum Information Research and Engineering, and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113, United States.
Light-driven formation of radical ion pairs that occurs much faster than their electron spin dynamics results in correlated spins whose coherence properties can be used as a quantum-based electric field sensor. This results from the radical ion pair having charge and spin distributions that track one another. Thus, electric field induced changes in the distance between the two charges are reflected in the spin-spin distance that can be measured directly using out-of-phase electron spin echo envelope modulation (OOP-ESEEM), a pulse-EPR technique.
View Article and Find Full Text PDF