Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to visualize the microstructures of starch hydrogels using synchrotron-based X-ray micro-computed tomography (μCT). Waxy maize starch (WMS, 3.3% amylose, db), pea starch (PS, 40.3% amylose), and high-amylose maize starch (HMS, 63.6% amylose) were cooked at 95 and 140 °C to prepare starch hydrogels. WMS and HMS failed to form a gel after 95 °C cooking and storage, while PS developed a firm gel. At 140 °C cooking, HMS of a high amylose nature was fully gelatinized and generated a rigid gel with the highest strength. Both scanning electron microscopy (SEM) and μCT revealed the unique structural features of various starch hydrogels/pastes prepared at different temperatures, which were greatly affected by the degree of swelling and dispersity of the starches. As a nondestructive method, μCT showed certain advantages over SEM, including minimal shrinkage of the hydrogels, relatively simple sample preparation, and allowing for three-dimensional reconstruction of the hydrogel microstructure. This study indicated that synchrotron-based μCT could be a useful technique in visualizing biopolymer-based hydrogels.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.3c01438DOI Listing

Publication Analysis

Top Keywords

starch hydrogels
12
synchrotron-based x-ray
8
x-ray micro-computed
8
micro-computed tomography
8
maize starch
8
140 °c
8
°c cooking
8
starch
7
hydrogels
5
utilizing synchrotron-based
4

Similar Publications

Preparation, characterization, and application of a novel chestnut starch-based bigel as a fat substitute in bread.

Int J Biol Macromol

September 2025

College of Food Science, Northeast Agricultural University, Harbin, 150030, China; College of Food Science and Engineering, Jilin University, Changchun, 130062, China; Heilongjiang Province China-Mongolia-Russia Joint R&D Laboratory for Bio-processing and Equipment for Agricultural Products (Interna

This study developed a novel self-assembled bigel by combining a chestnut starch (CS) hydrogel with a γ-oryzanol/β-sitosterol (γ-ORY/β-SIT) oleogel. The influence of the hydrogel to oleogel ratio on the macro and micro structures, mechanical properties and thermal stability of the bigels was examined, and its potential as a healthier solid fat substitute was further explored. The results indicated that as the proportion of hydrogel increased (10 %-50 %), all bigels maintained a consistent semi-solid structure without any phase separation.

View Article and Find Full Text PDF

Chitosan/dialdehyde starch coating onto l-tyrosine and curcumin intercalated layered double hydroxide for improved the therapeutic effects of breast cancer.

Int J Biol Macromol

September 2025

Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran. Electronic address:

This study aimed to develop an innovative pH-sensitive bio-hydrogel containing curcumin (CUR) and l-tyrosine (Tyr) intercalated layered double hydroxide-modified chitosan (CS)/dialdehyde starch (DAS) (DAS-CS@Tyr-CUR@LDH) to facilitate the controlled release of Tyr and CUR, thereby enhancing their bioavailability and therapeutic effects. The entrapment efficiencies of Tyr and CUR were obtained at 79.31 ± 5.

View Article and Find Full Text PDF

Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).

View Article and Find Full Text PDF

Islet transplantation offers a promising therapeutic strategy for type 1 diabetes patients with inadequate glycemic control or severe complications. Islet encapsulation using biocompatible materials presents a potential solution to reduce immune rejection. This study fabricated and characterized Schiff base hydrogels (CMOCs) composed of varying ratios of carboxymethyl chitosan (CMCS) and oxidized carboxymethyl starch (OCMS).

View Article and Find Full Text PDF

A host/guest assembled hyaluronic acid-based supramolecular hydrogel with NIR-steered degradation capacity for enhanced tumor therapy through programmable drug release.

Carbohydr Polym

November 2025

Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan Un

Recently, a variety of stimulus-responsive hydrogel platforms have been developed, specifically designed to respond to changes in physiological signals within the disease microenvironment. However, due to the restricted regulation of drug release behavior in vivo by such hydrogel systems, the precise control of drug release kinetics has not been achieved. Therefore, developing precise drug delivery platforms that enable programmable and "on-off" delivery remains a challenge in this field.

View Article and Find Full Text PDF