Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Explainable Artificial Intelligence (XAI) provides tools to help understanding how AI models work and reach a particular decision or outcome. It helps to increase the interpretability of models and makes them more trustworthy and transparent. In this context, many XAI methods have been proposed to make black-box and complex models more digestible from a human perspective. However, one of the main issues that XAI methods have to face especially when dealing with a high number of features is the presence of multicollinearity, which casts shadows on the robustness of the XAI outcomes, such as the ranking of informative features. Most of the current XAI methods either do not consider the collinearity or assume the features are independent which, in general, is not necessarily true. Here, we propose a simple, yet useful, proxy that modifies the outcome of any XAI feature ranking method allowing to account for the dependency among the features, and to reveal their impact on the outcome. The proposed method was applied to SHAP, as an example of XAI method which assume that the features are independent. For this purpose, several models were exploited for a well-known classification task (males versus females) using nine cardiac phenotypes extracted from cardiac magnetic resonance imaging as features. Principal component analysis and biological plausibility were employed to validate the proposed method. Our results showed that the proposed proxy could lead to a more robust list of informative features compared to the original SHAP in presence of collinearity.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3395289DOI Listing

Publication Analysis

Top Keywords

xai methods
16
features
8
xai
8
informative features
8
assume features
8
features independent
8
proposed method
8
characterizing contribution
4
contribution dependent
4
dependent features
4

Similar Publications

Personalized treatment selection is crucial for cancer patients due to the high variability in drug response. While actionable mutations can increasingly inform treatment decisions, most therapies still rely on population-based approaches. Here, we introduce neural interaction explainable AI (NeurixAI), an explainable and highly scalable deep learning framework that models drug-gene interactions and identifies transcriptomic patterns linked with drug response.

View Article and Find Full Text PDF

Background: Endometrial carcinoma (EC) represents a significant clinical challenge due to its pronounced molecular heterogeneity, directly influencing prognosis and therapeutic responses. Accurate classification of molecular subtypes (CNV-high, CNV-low, MSI-H, POLE) and precise tumor mutational burden (TMB) assessment is crucial for guiding personalized therapeutic interventions. Integrating proteomics data with advanced machine learning (ML) techniques offers a promising strategy for achieving precise, clinically actionable classification and biomarker discovery in EC.

View Article and Find Full Text PDF

Interpretable Artificial Intelligence Analysis of Functional Magnetic Resonance Imaging for Migraine Classification: Quantitative Study.

JMIR Med Inform

September 2025

Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.

Background: Deep learning has demonstrated significant potential in advancing computer-aided diagnosis for neuropsychiatric disorders, such as migraine, enabling patient-specific diagnosis at an individual level. However, despite the superior accuracy of deep learning models, the interpretability of image classification models remains limited. Their black-box nature continues to pose a major obstacle in clinical applications, hindering biomarker discovery and personalized treatment.

View Article and Find Full Text PDF

Objective: Cervical cancer screening through cytology remains the gold standard for early detection, but manual analysis is time-consuming, labor-intensive, and prone to inter-observer variability. This study proposes an automated deep learning-based framework that integrates lesion detection, feature extraction, and classification to enhance the accuracy and efficiency of cytological diagnosis.

Materials And Methods: A dataset of 4,236 cervical cytology samples was collected from six medical centers, with lesion annotations categorized into six diagnostic classes (NILM, ASC-US, ASC-H, LSIL, HSIL, SCC).

View Article and Find Full Text PDF

Background: Large language models (LLMs) have rapidly emerged as valuable tools in medical and dental education that support clinical reasoning, patient communication, and academic instruction. However, their effectiveness in conveying specialized content, such as fluoride-related dental knowledge, requires a thorough evaluation. This study assesses the performance of four advanced LLMs-ChatGPT-4 (OpenAI), Claude 3.

View Article and Find Full Text PDF