98%
921
2 minutes
20
Background: Deep learning has demonstrated significant potential in advancing computer-aided diagnosis for neuropsychiatric disorders, such as migraine, enabling patient-specific diagnosis at an individual level. However, despite the superior accuracy of deep learning models, the interpretability of image classification models remains limited. Their black-box nature continues to pose a major obstacle in clinical applications, hindering biomarker discovery and personalized treatment.
Objective: This study aims to investigate explainable artificial intelligence (XAI) techniques combined with multiple functional magnetic resonance imaging (fMRI) indicators to (1) compare their efficacy in migraine classification, (2) identify optimal model-indicator pairings, and (3) evaluate XAI's potential in clinical diagnostics by localizing discriminative brain regions.
Methods: We analyzed resting-state fMRI data from 64 participants, including 21 (33%) patients with migraine without aura, 15 (23%) patients with migraine with aura, and 28 (44%) healthy controls. Three fMRI metrics-amplitude of low-frequency fluctuation, regional homogeneity, and regional functional connectivity strength (RFCS)-were extracted and classified using GoogleNet, ResNet18, and Vision Transformer. For comprehensive model comparison, conventional machine learning methods, including support vector machine and random forest, were also used as benchmarks. Model performance was evaluated through accuracy and area under the curve metrics, while activation heat maps were generated via gradient-weighted class activation mapping for convolutional neural networks and self-attention mechanisms for Vision Transformer.
Results: The GoogleNet model combined with RFCS indicators achieved the best classification performance, with an accuracy of >98.44% and an area under the receiver operating characteristic curve of 0.99 for the test set. In addition, among the 3 indicators, the RFCS indicator improved accuracy by approximately 8% compared with the amplitude of low-frequency fluctuation. Brain activation heat maps generated by XAI technology revealed that the precuneus and cuneus were the most discriminative brain regions, with slight activation also observed in the frontal gyrus.
Conclusions: The use of XAI technology combined with brain region features provides visual explanations for the progression of migraine in patients. Understanding the decision-making process of the network has significant potential for clinical diagnosis of migraines, offering promising applications in enhancing diagnostic accuracy and aiding in the development of new diagnostic techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2196/72155 | DOI Listing |
JMIR Hum Factors
September 2025
Seidenberg School of Computer Science and Information Systems, Pace University, New York City, NY, United States.
Background: As information and communication technologies and artificial intelligence (AI) become deeply integrated into daily life, the focus on users' digital well-being has grown across academic and industrial fields. However, fragmented perspectives and approaches to digital well-being in AI-powered systems hinder a holistic understanding, leaving researchers and practitioners struggling to design truly human-centered AI systems.
Objective: This paper aims to address the fragmentation by synthesizing diverse perspectives and approaches to digital well-being through a systematic literature review.
J Med Microbiol
September 2025
Alberta Precision Laboratories Public Health Lab, Edmonton, Alberta, Canada.
For thousands of years, parasitic infections have represented a constant challenge to human health. Despite constant progress in science and medicine, the challenge has remained mostly unchanged over the years, partly due to the vast complexity of the host-parasite-environment relationships. Over the last century, our approaches to these challenges have evolved through considerable advances in science and technology, offering new and better solutions.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Oral and Maxillofacial Surgery, The Affiliated Tai'an City Central Hospital of Qingdao University, Taian, China.
J Robot Surg
September 2025
Department of CSE, United Institute of Technology, Coimbatore, India.
Diabetologia
September 2025
Department of Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
This review article, developed by the EASD Global Council, addresses the growing global challenges in diabetes research and care, highlighting the rising prevalence of diabetes, the increasing complexity of its management and the need for a coordinated international response. With regard to research, disparities in funding and infrastructure between high-income countries and low- and middle-income countries (LMICs) are discussed. The under-representation of LMIC populations in clinical trials, challenges in conducting large-scale research projects, and the ethical and legal complexities of artificial intelligence integration are also considered as specific issues.
View Article and Find Full Text PDF