98%
921
2 minutes
20
Designing high-performance polarization-sensitive photodetectors is essential for photonic device applications. Anisotropic one-dimensional (1D) van der Waals (vdW) materials have provided a promising platform to that end. Despite significant advances in 1D vdW photonic devices, their performance is still far from delivering practical potential. Herein, we propose the design of high-performance polarization-sensitive photodetectors using unique 1D vdW materials. By leveraging the chemical vapor transport technique, we successfully fabricate high-quality 1D vdW NbPdSe ( = 0.29) nanowires. The 1D vdW NbPdSe photodetector exhibits a high mobility of ∼56 cm/(V s) and superior photoresponse performance, including a high responsivity of 1A/W and an ultrafast response time of ∼8 μs under 638 nm illumination. Moreover, the 1D vdW NbPdSe photodetector demonstrates excellent polarization-sensitive photoresponse with a degree of linear polarization (DOLP) up to 0.85 and can be modulated by adjusting the gate voltage, laser power density, and wavelength. Those exceptional performance are believed to be relevant to the symmetry-reduction induced by the partial occupation of Pd sites. This study offers feasible approaches to enhance the anisotropy of 1D vdW materials and the modulation of their polarization-sensitive photoresponse, which may provide deep insights into the physical origin of anisotropic properties of 1D vdW materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c03233 | DOI Listing |
J Phys Condens Matter
September 2025
Wuhan University, Wuhan University, Wuhan, 430072, CHINA.
Manipulating magnetism in two-dimensional (2D) van der Waals (vdW) materials arouses considerable and ongoing interest in fundamental physics and potential applications in next-generation spintronics. Here, we have investigated the underlying electronic structures of bulk vdW magnets CrTe2 and NaCrTe2, by carrying out high-resolution angle-resolved photoemission spectroscopy (ARPES) studies and first-principles calculations. In CrTe2, strong out-of-plane band dispersions and metallic Fermi surface are observed, accompanied by temperature-dependent ferromagnetic (FM) energy gain behavior which directly confirms its itinerant origin.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Center for Graphene Research and Innovation, University of Mississippi, University, Mississippi 38677, United States.
To assess the efficacy of a mixed-dimensional van der Waals (vdW) heterostructure in modulating the optoelectronic responses of nanodevices, the charge transport properties of the transition-metal dichalcogenide (TMD)-based heterostructure comprising zero-dimensional (0D) WS quantum dots (QDs) and two-dimensional (2D) MoS flakes are critically analyzed. Herein, a facile strategy was materialized in developing an atomically thin phototransistor assembled from mechanically exfoliated MoS and WS QDs synthesized using a one-pot hydrothermal route. The amalgamated photodetectors exhibited a high responsivity of ∼8000 A/W at an incident power of 0.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Layered van der Waals (vdW) materials, characterized by their interlayer vdW gaps, offer exceptional tunability of magnetic properties via intercalation chemistry. A wide range of magnetic behaviors have been observed in nonmagnetic transition-metal dichalcogenides intercalated with magnetic atoms. Beyond the incorporation of magnetic ions, we propose the controlled alkali-ion intercalation of intrinsic vdW magnets as a strategy to probe and manipulate spin populations and exchange interactions within individual magnetic layers.
View Article and Find Full Text PDFNano Lett
September 2025
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China.
Molybdenum oxides (MOs) exhibit rich polymorphism and tunable properties, yet their phase transformation pathways are poorly understood. Here, we employ in situ environmental transmission electron microscopy (TEM) to reveal a direct reduction of MoO to metallic Mo, bypassing known intermediate phases such as MoO and MoO. Surface nucleation begins at approximately 800 °C and is completed at 900 °C.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
This study presents the experimental demonstration of metallic NbS-based one-dimensional van der Waals heterostructures using a modified NaCl-assisted chemical vapor deposition strategy. By employing a ″remote salt″ strategy, we realized precise control of the NaCl supply, enabling the growth of high-quality coaxial NbS nanotubes on single-walled carbon nanotube-boron nitride nanotube (SWCNT-BNNT) templates. Using this remote salt strategy, the morphologies of as-synthesized NbS could be tuned from 1D nanotubes to suspended 2D flakes.
View Article and Find Full Text PDF