Predicting the new psychoactive substance activity of antitussives and evaluating their ecotoxicity to fish.

Sci Total Environ

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Univer

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The misuse of antitussives preparations is a continuing problem in the world, and imply that they might have potential new psychoactive substances (NPS) activity. However, few study focus on their ecological toxicity towards fish. In the present study, the machine learning (ML) methods gcForest and random forest (RF) were employed to predict NPS activity in 30 antitussives. The potential toxic target, mode of action (MOA), acute toxicity and chronic toxicity to fish were further investigated. The results showed that both gcForest and RF achieved optimal performance when utilizing combined features of molecular fingerprint (MF) and molecular descriptor (MD), with area under the curve (AUC) = 0.99, accuracy >0.94 and f1 score > 0.94, and were applied to screen the NPS activity in antitussives. A total of 15 antitussives exhibited potential NPS activity, including frequently-used substances like codeine and dextromethorphan. The binding affinity of these antitussives with zebrafish dopamine transporter (zDAT) was high, and even surpassing that of some traditional narcotics and NPS. Some antitussives formed hydrogen bonds or salt bridges with aspartate (Asp) 95, tyrosine (Tyr) 171 of zDAT. For the ecotoxicity, the MOA of these 15 antitussives in fish was predicted as narcosis. The prenoxdiazin, pholcodine, codeine, dextromethorphan and dextrorphan exhibited very toxic/toxic to fish. It was necessary to pay close attention to the ecotoxicity of these antitussives. In this study, the integration of ML, molecular docking and ECOSAR approaches are powerful tools for understanding the toxicity profiles and ecological hazards posed by new pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172872DOI Listing

Publication Analysis

Top Keywords

nps activity
16
activity antitussives
12
antitussives
9
toxicity fish
8
codeine dextromethorphan
8
activity
5
fish
5
nps
5
predicting psychoactive
4
psychoactive substance
4

Similar Publications

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.

View Article and Find Full Text PDF

Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.

View Article and Find Full Text PDF

Polystyrene nanoplastics reprogramed pulmonary metabolisms mediated by immune regulation of myeloid hypoxia-inducible factor 1α.

Environ Int

September 2025

State Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sciences, Northeastern University, Shenyang 110004, China; School of Environment, Hangzhou Institute for Advanced Study, Univ

Exposure to nanoplastics (NPs), a pervasive environmental pollutant, presents potential health risks. Pulmonary exposure to NPs has been shown to disrupt both pulmonary metabolic status and immune homeostasis, leading to concerns about their impact on respiratory health and systemic well-being. However, the underlying linkage and mechanisms remain elusive.

View Article and Find Full Text PDF

Hemostatic intervention at the bleeding site during early-phase wound management plays a crucial role in reducing trauma-induced complications and mortality, while advanced wound dressings facilitate hemorrhage control, exudate management, and antimicrobial protection to promote optimal healing outcomes. To address these issues, we developed a multifunctional collagen/silk fibroin/Mg(OH)₂ (Col/SF/Mg(OH)₂) composite sponge combining enhanced mechanical strength, rapid hemostasis, and broad-spectrum antibacterial activity. The incorporation of silk fibroin (SF) through covalent crosslinking increased the elastic modulus by 4.

View Article and Find Full Text PDF