98%
921
2 minutes
20
Cluster of differentiation 44 (CD44) is a non-kinase cell surface glycoprotein. It is overexpressed in several cell types, including cancer stem cells (CSCs). Cells overexpressing CD44 exhibit several CSC traits, such as self-renewal, epithelial-mesenchymal transition (EMT) capability, and resistance to chemo- and radiotherapy. The role of CD44 in maintaining stemness and the CSC function in tumor progression is accomplished by binding to its main ligand, hyaluronan (HA). The HA-CD44 complex activates several signaling pathways that lead to cell proliferation, adhesion, migration, and invasion. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The different functional roles of CD44s and specific CD44v isoforms still need to be fully understood. The clinicopathological impact of CD44 and its isoforms in promoting tumorigenesis suggests that CD44 could be a molecular target for cancer therapy. Furthermore, the recent association observed between CD44 and KRAS-dependent carcinomas and the potential correlations between CD44 and tumor mutational burden (TMB) and microsatellite instability (MSI) open new research scenarios for developing new strategies in cancer treatment. This review summarises current research regarding the different CD44 isoform structures, their roles, and functions in supporting tumorigenesis and discusses its therapeutic implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11048923 | PMC |
http://dx.doi.org/10.3390/cancers16081569 | DOI Listing |
J Invest Dermatol
September 2025
Department of Surgery, University of California San Diego, La Jolla, CA, United States; Department of Dermatology, University of California San Diego, La Jolla, CA, United States. Electronic address:
Normal cutaneous wound healing is a multicellular process that involves the release of small extracellular vesicles (sEVs) that coordinate intercellular communication by delivery of sEV payloads to recipient cells. We have recently shown how the pro-reparative activity of inflammatory cell sEVs, especially macrophage and neutrophil-derived sEVs, in the wound bed is dysregulated in impaired wound healing. Here we show that loss of Rab27A, a small GTPase that has a regulatory function in sEV secretion, reduces the release of neutrophil and macrophage-derived sEVs.
View Article and Find Full Text PDFJ Am Heart Assoc
September 2025
Department of Neurosurgery Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences Beijing China.
Background: The cellular composition and molecular mechanisms of the pathological arteries in Moyamoya disease (MMD) remain poorly understood. To improve our understanding of pathogenesis in MMD, we aimed to comprehensively map the cellular composition and molecular alterations within the pathological arteries of patients with MMD.
Methods: Superficial temporal artery samples were collected from patients with MMD (n=2) and healthy controls (n=3), yielding a total of 26 371 cells that were used for single-cell RNA sequencing.
Drug Resist Updat
September 2025
Department of Oncology, Cancer Stem Cell and Translational Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang 110004, China; School of Bioengineering, Dalian University of Technology, Dalian
J Immunother Cancer
September 2025
Department of Pediatrics, Center for Childhood Cancer and Blood Disorders, Division of Heme/Onc and Bone Marrow Transplant, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
Background: Diffuse midline glioma (DMG) and glioblastoma (GBM) are aggressive brain tumors with limited treatment options. Macrophage phagocytosis is a complex, tightly regulated process governed by competing pro-phagocytic and anti-phagocytic signals. CD47-SIRPα signaling inhibits macrophage activity, while radiotherapy (RT) can enhance tumor immunogenicity.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA.
T cells play an important role in initiating antibody responses by instructive signals of cell-cell contacts and secretion of soluble cytokines as mediators. We investigated the role of the modified soluble E2 (sE2) antigen from hepatitis C virus (HCV) on healthy human peripheral blood mononuclear cell (PBMC)-derived immune cells or immunized mouse cells to understand the mechanisms of immune regulation by the candidate vaccine antigen. HCV E2 and E2 displayed a role in inducing type 17 T-helper cell (Th17) phenotype, as indicated by interleukin-17 (IL-17) expression and signal transducer and activator of transcription 3 (Stat3) phosphorylation.
View Article and Find Full Text PDF