98%
921
2 minutes
20
Objective: This investigation aimed to assess the impact of obesity on the load-transfer mechanism, longevity, and contact mechanics of cemented acetabular cups.
Methods: Three obesity scenarios were considered: obese case-I (100-110 kg), obese case-II (120-130 kg), and obese case-III (140-150 kg). Utilising six finite element models, the effects of different bodyweights on load transfer, contact mechanics, and cup longevity during normal walking conditions were assessed. Muscle forces and hip joint reaction forces were adjusted and linearly calibrated based on obesity cases.
Results: Elevated stresses in cortical and cancellous bones, as well as the cement mantle, were observed in obese cases, suggesting a heightened risk of loosening and failure of the cemented fixation of the acetabular cup. Additionally, increased contact pressure and micromotion between articulating surfaces were noted in obese individuals, with a gradual escalation from obese case-I to obese case-III.
Conclusions: These findings highlight the significant negative impact of obesity on the performance of cemented acetabular cups, emphasizing the importance of considering bodyweight variations in the design and assessment of orthopaedic implants for optimal functionality and durability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11039316 | PMC |
http://dx.doi.org/10.1016/j.jor.2024.04.012 | DOI Listing |
Eur Heart J Case Rep
September 2025
Department of Cardiology, Toyohashi Heart Center, 21-1 Gobutori, Oyamacho, Toyohashi 441-8530, Japan.
Background: Mitral regurgitation (MR) may rarely worsen after transcatheter aortic valve implantation (TAVI) due to mechanical interference from the transcatheter heart valve (THV). Standard surgical approaches in these cases are often challenging due to anatomical constraints. Thus, there is a need for the development of effective alternatives to address this issue.
View Article and Find Full Text PDFAdv Eng Mater
July 2025
Department of Mechanical Engineering University of Nevada, Las Vegas, NV, US.
Highly contagious respiratory infection diseases such as COVID-19 can be transmitted by inhaling virus laden liquid droplets and short-range aerosols, released by an infected person. Particularly, in hospitals, spraying of the respiratory droplets containing pathogens from the conjunctiva or mucus of a susceptible person plays a key role in transferring the infectious diseases. N95 filtering respirators are a critical personal protective equipment.
View Article and Find Full Text PDFNewton
September 2025
Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
In confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed the concurrent occurrence of both tail-to-head and head-to-tail defect motion in the same cell monolayer.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, 29634, USA. Electronic address:
Sepiolite (SP) is a naturally occurring sedimentary silicate clay mineral known for its unique structure, high surface area, and rich surface chemistry, particularly silanol groups (Si-OH), which facilitate strong interfacial interactions in polymer matrices. Its ability to act as a nanofiller has gained attention in the development of advanced biopolymer nanocomposites, especially for food packaging applications where material performance, sustainability, and safety are critical. SP enhances the thermal stability, barrier properties, and mechanical strength of starch and other biopolymer matrices, key factors in extending shelf life.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
September 2025
Education and Research Department, Isokinetic Medical Group, FIFA Medical Centre of Excellence, Bologna, Italy.
Purpose: To describe the mechanisms, situational patterns, biomechanics and neurocognitive errors related ankle sprain injuries of professional male football players during match play.
Methods: There were 166 consecutive ankle sprain injuries identified occurring during official matches in players of top European football leagues. One hundred and forty (84%) injury videos were analysed for mechanism and situational pattern, with biomechanics on 20 players.