Formic acid oxidation (FAO) reaction is an important electrocatalytic reaction in low-temperature proton exchange membrane fuel cells. Pd-based material has a superior electrochemical activity towards FAO. The activity of Pd-based bimetallic materials is also well-studied in the literature.
View Article and Find Full Text PDFWe have applied the vibrational up-pumping model to predict the mechanically-induced impact sensitivities of 33 molecular energetic crystals. Overall, the current model successfully identifies and ranks the compounds that are most sensitive to mechanical initiation, but offers poorer differentiation between compounds with lower sensitivity. Further developments to include the effects of trigger bond activation led to significant improvements in predictive capability.
View Article and Find Full Text PDFAmyloid peptide non-fibrillar oligomers cause neurotoxicity and may contribute to Alzheimer's disease (AD) pathogenesis. Mounting evidence indicates that Aβ oligomers disrupt and remodel neuronal membrane, causing neuronal cell death. The involvement of individual neuronal membrane constituents in real-time Aβ aggregate assembly is unclear due to complexity of neuronal cell membrane.
View Article and Find Full Text PDFIn the current study, we designed a unique core-to-shell thickness-regulated Ag@Au nanocatalyst (NPs) for HO-induced selective oxidative etching of core silver. Synthesized NPs exhibit high colloidal stability and demonstrate a significant localized surface plasmon resonance (LSPR) effect in the biological window. These unique properties in turn allow us to formulate a unique NP-based LSPR-induced electrochemical detection assay for selective trace-level sensing of HO .
View Article and Find Full Text PDFUnderstanding molecular motifs that can interfere with amyloid fibrillation through non-covalent interactions is essential for addressing abnormal protein aggregation and associated human diseases. The pursuit of efficient diagnostic and treatment approaches for Alzheimer's disease (AD) has resulted in the development of M8HQ, a multifaceted small molecule turn-on probe derived from 8-hydroxyquinoline with versatile capabilities. M8HQ shows a strong affinity for amyloid beta (Aβ) fibrils, and its ability to target lysosomes enhances therapeutic precision by localizing within these organelles.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Total ankle arthroplasty is the gold standard surgical treatment for severe ankle arthritis and fracture. However, revision surgeries due to the failure of the ankle implant are a serious concern. Extreme bone density loss due to bone remodelling is one of the main reasons for implant loosening, with aseptic loosening of the talar component being one of the primary reasons for total ankle arthroplasty revisions.
View Article and Find Full Text PDFObjective: This investigation aimed to assess the impact of obesity on the load-transfer mechanism, longevity, and contact mechanics of cemented acetabular cups.
Methods: Three obesity scenarios were considered: obese case-I (100-110 kg), obese case-II (120-130 kg), and obese case-III (140-150 kg). Utilising six finite element models, the effects of different bodyweights on load transfer, contact mechanics, and cup longevity during normal walking conditions were assessed.
J Biomed Mater Res B Appl Biomater
January 2024
Vertebral compression fractures are one of the most severe clinical consequences of osteoporosis and the most common fragility fracture afflicting 570 and 1070 out of 100,000 men and women worldwide, respectively. Vertebroplasty (VP), a minimally invasive surgical procedure that involves the percutaneous injection of bone cement, is one of the most efficacious methods to stabilise osteoporotic vertebral compression fractures. However, postoperative fracture has been observed in up to 30% of patients following VP.
View Article and Find Full Text PDFThe emergence of neurodegenerative diseases is connected to several pathogenic factors, including metal ions, amyloidogenic proteins, and reactive oxygen species. Recent studies suggest that cytotoxicity is caused by the small, dynamic, and metastable nature of early stage oligomeric species. This work introduces a small molecule-based red-emitting probe with smart features such as increased reactivities against multiple targets, metal-free amyloid-β (Aβ), and metal-bound amyloid-β (Aβ), and most importantly, early stage oligomeric species which are associated with the most common and widespread type of dementia, Alzheimer's disease (AD).
View Article and Find Full Text PDFFibrillation of amyloid beta (Aβ) is the key event in the amyloid neurotoxicity process that induces a chain of toxic events including oxidative stress, caspase activation, poly(ADP-ribose) polymerase cleavage, and mitochondrial dysfunction resulting in neuronal loss and memory decline manifesting as clinical dementia in humans. Herein, we report the development of a novel, biologically active supramolecular probe, INHQ, and achieve functional nanoarchitectures via a self-assembly process such that ultralong fibers are achieved spontaneously. With specifically decorated functional groups on INHQ such as imidazole, hydroxyquinoline, hydrophobic chain, and hydroxyquinoline molecules, these ultralong fibers coassembled efficiently with toxic Aβ oligomers and mitigated the amyloid-induced neurotoxicity by blocking the aforementioned biochemical events leading to neuronal damage in mice.
View Article and Find Full Text PDFThe application of mechanical stimulation on bone tissue engineering constructs aims to mimic the native dynamic nature of bone. Although many attempts have been made to evaluate the effect of applied mechanical stimuli on osteogenic differentiation, the conditions that govern this process have not yet been fully explored. In this study, pre-osteoblastic cells were seeded on PLLA/PCL/PHBV (90/5/5 wt.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
June 2023
Traumatic spinal cord injuries result from high impact forces acting on the spine and are proceeded by an extensive secondary inflammatory response resulting in motor, sensory, and autonomic dysfunction. Experimental in vivo traumatic spinal cord injuries in rodents using a contusion model have been extremely useful in elucidating the underlying pathophysiology of these injuries. However, the relationship between the pathophysiology and the biomechanical factors is still not well understood.
View Article and Find Full Text PDFThe occurrence of periprosthetic femoral fractures (PFF) has increased in people with osteoporosis due to decreased bone density, poor bone quality, and stress shielding from prosthetic implants. PFF treatment in the elderly is a genuine concern for orthopaedic surgeons as no effective solution currently exists. Therefore, the goal of this study was to determine whether the design of a novel advanced medicinal therapeutic device (AMTD) manufactured from a polymeric blend in combination with a fracture fixation plate in the femur is capable of withstanding physiological loads without failure during the bone regenerative process.
View Article and Find Full Text PDFJ Food Biochem
December 2022
The genus Arenga belongs to the Arecaceae family, which has a significant economic value. Several species of this genus have a decent potential of becoming an industrial crop. In India, four species of the genus, namely Arenga pinnata, A.
View Article and Find Full Text PDFThe stereochemical activity of lone pair electrons plays a central role in determining the structural and electronic properties of both chemically simple materials such as HO, as well as more complex condensed phases such as photocatalysts or thermoelectrics. TlReO is a rare example of a non-magnetic material exhibiting a re-entrant phase transition and emphanitic behavior in the long-range structure. Here, we describe the role of the Tl 6s lone pair electrons in these unusual phase transitions and illustrate its tunability by chemical doping, which has broad implications for functional materials containing lone pair bearing cations.
View Article and Find Full Text PDFBackground: The long-term success of total ankle replacement (TAR) depends on both bone ingrowth and remodelling. The extreme values of implant-bone micromotion hinder bone ingrowth. Whereas, bone resorption due to bone remodelling is triggered by stress shielding.
View Article and Find Full Text PDFThe growth of smart wearable sensing systems has gained immense importance in the present mode of data acquisition and signaling in pharmaceutical, healthcare, and wellness industries. Presently, application of smart wearables is gaining prominence in several fitness activities, therapeutics, and diagnostic areas. Smart wearable biosensors offer real-time monitoring of physiological metrics and biomarkers that are specific to certain diseases in ambulant condition.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2022
This article thoroughly addresses the structural, mechanical, vibrational, electronic band structure and the optical properties of the unexplored thallous perchlorate and perbromate fromcalculations. The zone centered vibrational phonon frequencies shows, there is a blue shift in the mid and high frequency range from Cl → Br due to change in mass and force constant with respect to oxygen atom. From the band structure it is clear that the top of the valence band is due to thalliumstates, whereas the bottom of the conduction band is due to halogenand oxygenstates, showing similar magnitude of dispersion and exhibits a charge transfer character.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2022
Thiazole based receptor 3, was designed and synthesized by condensation reactionof5-chlorosalicylaldehyde with 4-(4-phenylthiazol-2-yl)semicarbazide for colorimetric and fluorimetric detection of fluoride ion. Receptor 3 was characterized by H NMR, C NMR, and HRMS, and shows absorption in 280-400 nm region with emission at 442 nm in tetrahydrofuran (THF). Addition of fluoride ion to the THF solution of receptor 3 results in color change from colorless to yellow with significant change in UV-Visible absorption.
View Article and Find Full Text PDFExtreme bone resorption due to bone remodelling is one of the reasons for ankle component loosening. Finite element (FE) analysis has been effectively used nowadays for pre-clinical analysis of orthopaedic implants. For FE modelling, the selection of bone material and dead zone play a vital role to understand the bone remodelling.
View Article and Find Full Text PDF