Colorimetric and fluorimetric detection of fluoride ion using thiazole derived receptor.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, CMR Institute of Technology, Bengaluru-560037, India; Centre of Excellence in Materials Science/Sensors & Nanoelectronics, CMR Institute of Technology, Bengaluru 560037, India; VTU-RC affiliated to Visvesvaraya Technological University, Belagavi, Karnataka, India.

Published: January 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thiazole based receptor 3, was designed and synthesized by condensation reactionof5-chlorosalicylaldehyde with 4-(4-phenylthiazol-2-yl)semicarbazide for colorimetric and fluorimetric detection of fluoride ion. Receptor 3 was characterized by H NMR, C NMR, and HRMS, and shows absorption in 280-400 nm region with emission at 442 nm in tetrahydrofuran (THF). Addition of fluoride ion to the THF solution of receptor 3 results in color change from colorless to yellow with significant change in UV-Visible absorption. The receptor-anion interaction occurs via hydrogen bonding followed by deprotonation which results in large bathochromic shift in absorption spectra and naked-eye color change. The colorimetric changes show selective response for fluoride ions over other anions. Fluorescence studies exhibit remarkable enhancement in emission intensity upon addition of fluoride ion with a limit of detection (LOD) of 8.6 nM. The H NMR titration studies exhibit deprotonation of the -OH proton of the salicylaldimine moiety resulting significant colorimetric and fluorimetric changes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120301DOI Listing

Publication Analysis

Top Keywords

fluoride ion
16
colorimetric fluorimetric
12
fluorimetric detection
8
detection fluoride
8
addition fluoride
8
color change
8
studies exhibit
8
fluoride
5
colorimetric
4
ion
4

Similar Publications

Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).

View Article and Find Full Text PDF

Valorizing spent lithium iron phosphate battery in biomass pyrolysis for production of valuable chemicals and mitigating pollutant emissions.

Bioresour Technol

September 2025

Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

The rapid increase of electronic waste, particularly battery waste, presents significant environmental challenges such as pollutant emissions and resource depletion, emphasizing the need for effective valorization and reuse strategies. This study introduces a novel approach for repurposing end-of-life lithium iron phosphate (LFP) batteries as catalysts in the pyrolysis of walnut shells (WS). Characterization analyses revealed that LFP provides both Lewis and Brønsted acid sites, which alter the thermal decomposition pathway of WS.

View Article and Find Full Text PDF

Antipyretic analgesics are typical pharmaceutical and personal care products (PPCPs) that are widely used in our daily life because they relieve fever and pain, and have anti-inflammatory and anti-rheumatic properties. These drugs inhibit the synthesis and release of prostaglandins (PGs) in the neurons of the anterior hypothalamus and exert therapeutic effects as a consequence. However, these drugs are relatively commonly misused and abused, often owing to a lack of proper medication guidance.

View Article and Find Full Text PDF

Bisphenol A (BPA) and its analogs are collectively termed bisphenol compounds (BPs), which are predominantly utilized in the manufacturing of polycarbonate plastics and epoxy resins. BPs are ubiquitous in diverse environmental matrices, human tissues, and metabolic products. Extensive research has demonstrated that BPs exert adverse effects on the nervous, reproductive, immune, and metabolic systems.

View Article and Find Full Text PDF

This report presents the findings of a secondary analysis of the data from an RCT designed to compare salivary fluoride levels during 3 weeks of using 5000 or 1450-ppm fluoride toothpaste (n = 24/group). Following this trial phase, salivary fluoride monitoring continued for 2 weeks during which all 48 participants used 1450-ppm fluoride toothpaste in a wash-out phase. We investigated the temporal variability and longitudinal growth-based trajectories of salivary fluoride levels across study arms.

View Article and Find Full Text PDF