98%
921
2 minutes
20
The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco macrophages. Functional ablation of Marco macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-024-07372-6 | DOI Listing |
PLoS Negl Trop Dis
September 2025
Programa de Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brasil.
Microsporidia causes opportunistic infections in immunosuppressed individuals. Mammals shed these spores of fungi in feces, urine, or respiratory secretions, which could contaminate water and food, thereby reaching the human body and causing infection. The oral route is the most common route of infection, although experiments have demonstrated that intraperitoneal and intravenous routes may also spread infection.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University; Haihe Laboratory of Cell Ecosystem, Institute of Hematology, Chinese Academy of Medical Sciences; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedici
Xenogeneic cell transplantation often faces significant immune rejection, even in immunodeficient animal models. Among residual immune components, macrophages can actively phagocytose transplanted human cells, posing a challenge to long-term engraftment. To address this, we developed a standardized in vitro assay to quantify macrophage-mediated phagocytosis of human versus rat red blood cells (RBCs).
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital &Guangzhou Institute of Cancer Research, The Affiliate Cancer Hospital &School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China.
Surgical resection remains the frontline intervention for cancer; however, postoperative tumor recurrence and wound infection remain critical unmet challenge in surgical oncology. Herein, an all-in-one nanowired hydrogel (V-Hydrogel) is developed through a facile one-step assembly employing enzyme-mimetic VO nanowires and bactericidal crosslinker THPS. The V-Hydrogel reserves the glutathione peroxidase-, peroxidase-, catalase-, and oxidase-mimetic enzymatic activities derived from vanadium oxide nanowires, thereby exhibiting efficient tumor-specific catalytic therapy.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
Introduction: Oral squamous cell carcinoma (OSCC) has a poor prognosis due to its immunosuppressive tumor microenvironment (TME), in which tumor-associated macrophages (TAMs) play a pivotal role in promoting disease progression and therapeutic resistance. This study examines whether Prussian blue nanoparticles (PB NPs) could reprogram TAMs and block tumor-stroma communication in OSCC.
Methods: PB NPs were synthesized using polyvinylpyrrolidone-assisted coprecipitation and characterized by transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy.
Oncol Res
September 2025
Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
Objectives: Proteasomes, multi-subunit proteases, are key actors of cellular protein catabolism and a number of regulatory processes. The detection of subtle proteasome functioning in tumors may contribute to our understanding of the mechanisms of cancer development. The current study aimed to identify the role of low molecular mass protein 2 (LMP2), a proteasome immune subunit, in the development of mouse colon 26 (C26) adenocarcinoma.
View Article and Find Full Text PDF