98%
921
2 minutes
20
ConspectusRecent years have witnessed the development of cluster materials as they are atomically precise molecules with uniform size and solution-processability, which are unattainable with traditional nanoparticles or framework materials. The motivation for studying Al(III) chemistry is not only to understand the aggregation process of aluminum in the environment but also to develop novel low-cost materials given its natural abundance. However, the Al-related clusters are underdeveloped compared to the coinage metals, lanthanides, and transition metals. The challenge in isolating crystalline compounds is the lack of an effective method to realize the controllable hydrolysis of Al(III) ions. Compared with the traditional hydrolysis of inorganic Al(III) salts in highly alkaline solutions and hydrolysis of aluminum trialkyl compounds conducted carefully in an inert operating environment, we herein developed an effective way to control the hydrolysis of aluminum isopropanol through an alcoxalation reaction. By solvothermal/low melting point solid melting synthesis and using "ligand aggregation, solvent regulation, and supracluster assembly" strategies, our laboratory has established an organic-inorganic hybrid system of aluminum oxo clusters (AlOCs). The employment of organic ligands promotes the aggregation and slows the hydrolysis of Al(III) ions, which in turn improves the crystallization process. The regulation of the structure types can be achieved through the selection of ligands and the supporting solvents. Compared with the traditional condensed polyoxoaluminates, we successfully isolated a broad range of porous AlOCs, including aluminum molecular rings and Archimedes aluminum oxo cages. By studying ring expansion, structural transformation, and intermolecular supramolecular assembly, we demonstrate unique and unprecedented structural controllability and assembly behavior in cluster science. The advancement of this universal synthetic method is to realize materials customization through modularly oriented supracluster assembly. In this Account, we will provide a clear-cut definition and terminology of "ligand aggregation, solvent regulation, and supracluster assembly". Then we will discuss the discovery in this area by using a strategy, such as aluminum molecular ring, ring size expansion, ring supracluster assembly, etc. Furthermore, given the internal and external pore structures, as well as the solubility and modifiability of the AlOCs, we will demonstrate their potential applications in both the solid and liquid phases, such as iodine capture, the optical limiting responses, and dopant in polymer dielectrics. The strategy herein can be applied to extensive cluster science and promote the research of main group element chemistry. The new synthetic method, fascinating clusters, and unprecedented assembly behaviors we have discovered will advance Al(III) chemistry and will also lay the foundation for functional applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.4c00143 | DOI Listing |
Chem Sci
August 2025
Department of Chemistry, Graduate School of Science, Osaka University Toyonaka Osaka 560-0043 Japan.
Liquid is the most flexible state of condensed matter and shows promise as a functional soft material. However, these same characteristics make it challenging to achieve efficient room-temperature phosphorescence (RTP) from metal-free organic molecular liquids. Herein, we report efficient RTP from liquefied thienyl diketones bearing one or two dimethyloctylsilyl (DMOS) substituents.
View Article and Find Full Text PDFIn this letter, the pull-off forces of adsorbed films of four Bap1-inspired peptides in various solvents were investigated on negatively charged mica substrates using the surface forces apparatus (SFA), complemented with dynamic light scattering (DLS) for characterizing the aggregation behavior of peptides in solution. Bap1-inspired peptides consisted of the 57 amino acid wild-type sequence (WT); a scrambled version of the WT used to investigate the impact of the primary amino acid sequence in pull-off forces (Scr); a ten amino acid sequence rich in hydrophobic content (CP) of the WT sequence, and an eight amino acid sequence (Sh1) that corresponds to the pseudo-repeating sequence in the 57 AA. SFA results showed remarkable pull-off forces for CP, particularly in the presence of salts: measured pull-off forces were 26.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
Compared with the conventionally used strong acid/electrophile initiators, carboxylic acids are much more compatible with other functional groups but are incapable of initiating cationic polymerization for the one-step synthesis of end-functionalized polymers. Using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as a catalyst, we realized carboxylic acid-initiated cationic ring-opening polymerization (CROP) of 2-ethyl-2-oxazoline (EtOx). The dynamic exchange between carboxylate and TFSI anions, driven by Li-carboxylate interaction, significantly enhances the activity of oxazolinium propagating species and ensures uniform chain growth, as shown by both experiments and calculations.
View Article and Find Full Text PDFChemistry
September 2025
Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
Di(hetero)aroyl dichlorides are desymmetrized upon sequential reaction with alcohols and 2-methyl N-benzyl thiazolium salts within the course of a one-pot three-component reaction yielding ester-substituted aroyl-S,N-ketene acetals under mild conditions in good yields. A prerequisite for the concise one-pot process is the different nucleophilicity of the alcohols and in situ generated S,N-ketene acetals. The resulting compounds are merocyanines with dominant charge-transfer absorption bands which are fluorescent in the solid state, but not in solution.
View Article and Find Full Text PDFAnal Chim Acta
October 2025
Department of Chemistry, Tokyo Institute of Technology (Currently Institute of Science Tokyo), Meguro-ku, Tokyo, 152-8551, Japan; National Institute of Technology (KOSEN), Numazu College, 3600 Ooka, Numazu, Shizuoka, 410-8501, Japan. Electronic address:
Background: Graphene, with its unique electronic, thermal, and mechanical properties, plays an important role in electronic devices and batteries. Current applications strongly rely on liquid-phase processing, which requires stable graphene dispersions. However, stabilizing graphene dispersions in a liquid phase remains challenging because graphene easily aggregates due to strong inter-sheet forces.
View Article and Find Full Text PDF