98%
921
2 minutes
20
Imaging the live human brain at the mesoscopic scale is a desideratum in basic and clinical neurosciences. Despite the promise of diffusion MRI, the lack of an accurate model relating the measured signal and the associated microstructure has hampered its success. The widely used diffusion tensor MRI (DTI) model assumes an anisotropic Gaussian diffusion process in each voxel, but lacks the ability to capture intravoxel heterogeneity. This study explores the extension of the DTI model to mesoscopic length scales by use of the diffusion tensor distribution (DTD) model, which assumes a Gaussian diffusion process in each subvoxel. DTD MRI has shown promise in addressing some limitations of DTI, particularly in distinguishing among different types of brain cancers and elucidating multiple fiber populations within a voxel. However, its validity in live brain tissue has never been established. Here, multiple diffusion-encoded (MDE) data were acquired in the living human brain using a 3 Tesla MRI scanner with large diffusion weighting factors. Two different diffusion times (Δ = 37, 74 ms) were employed, with other scanning parameters fixed to assess signal decay differences. In vivo diffusion-weighted signals in gray and white matter were nearly identical at the two diffusion times. Fitting the signals to the DTD model yielded indistinguishable results, except in the cerebrospinal fluid (CSF)-filled voxels likely due to pulsatile flow. Overall, the study supports the time invariance of water diffusion at the mesoscopic scale in live brain parenchyma, extending the validity of the anisotropic Gaussian diffusion model in clinical brain imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11030434 | PMC |
http://dx.doi.org/10.1101/2024.04.10.588939 | DOI Listing |
Stroke
September 2025
Departments of Radiology and Neurology, Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston (E.L., R.M.P., K.H., E.H.L., E.E.).
Background: Despite promising preclinical results, remote limb ischemic postconditioning efficacy in human stroke treatment remains unclear, with mixed clinical trial outcomes. A potential reason for translational difficulties could be differences in circadian rhythms between nocturnal rodent models and diurnal humans.
Methods: Male C57BL/6J mice were subjected to transient focal cerebral ischemia and then exposed to remote postconditioning during their active or inactive phase and euthanized at 24 hours and 3 days.
Brain Behav
September 2025
Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Introduction: Anxiety and stress are prevalent mental health issues. Traditional drug treatments often come with unwanted side effects and may not produce the desired results. As an alternative, probiotics are being used as a treatment option due to their lack of specific side effects.
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
Aims: Sustained neuroinflammation following ischemic stroke impedes post-injury tissue repairment and neurological functional recovery. Developing innovative therapeutic strategies that simultaneously suppress detrimental inflammatory cascades and facilitate neurorestorative processes is critical for improving long-term rehabilitation outcomes.
Methods: We employed a microglia depletion-repopulation paradigm by administering PLX5622 for 7 days post-ischemia; followed by a 7-day withdrawal period to allow microglia repopulation.
Zoonoses Public Health
September 2025
College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum, Sudan.
Introduction: Toxoplasma gondii is a zoonotic parasite of significant public health concern, particularly in regions where consumption of undercooked meat is common. Despite the importance of sheep as a potential source of human infection, understanding of T. gondii seroprevalence and tissue distribution in sheep in the Red Sea State in Sudan remains limited.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Department of Medical Genetics and Prenatal Diagnostics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.
View Article and Find Full Text PDF