98%
921
2 minutes
20
In the leather manufacturing industry, the management of substantial quantities of solid waste containing chrome shavings remains a formidable challenge. Concurrently, there is a pressing need for the development of pH-universal and economically viable electrocatalysts for the hydrogen evolution reaction (HER). In response to these intertwined challenges, this study proposes an innovative approach wherein the amino groups present on the surface of chrome shavings are utilized to immobilize single ruthenium atoms during pyrolysis, thereby facilitating the synthesis of hydrogen evolution electrocatalysts. The optimized sample, denoted as CN/CrO/Ru-1, demonstrates exceptional electrocatalytic performance, exhibiting an ultra-low overpotential of -28 mV in 1.0 M KOH at a current density of 10 mA cm, and it also exhibits good performance in acidic and neutral electrolytes. Importantly, these overpotentials surpass those reported for many previous ruthenium-based catalysts. Density functional theory (DFT) calculations elucidate that both oxygen (O) and chromium (Cr) moieties within CrO can engage in favorable interactions with the coordination patterns of the ruthenium (Ru) atoms, thereby elucidating the synergistic enhancement conferred by the chromium element in CN/CrO/Ru, which ultimately facilitates and promotes the catalytic activity of the ruthenium atoms serving as the catalytic center. This facile synthesis route not only presents a green solution for addressing waste chromium pollutants but also offers a promising avenue for the development of high-performance, cost-efficient electrocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3mh01951a | DOI Listing |
J Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFSmall
September 2025
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia.
Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China.
Photocatalysis holds significant promise for the reduction of CO to valued chemicals under mild conditions. However, its potential is severely limited by weak CO adsorption and slow proton-coupled electron transfer (PCET) rates. In this work, ZnInS-based catalysts with varying hydroxyl contents were synthesized via the solvothermal method.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.
Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
Visible-light-responsive Rh/Sb co-doped SrTiO with engineered {100}/{110} facets (STO:RS(NaCl)) was synthesized flux-assisted crystallization. Facet-dependent spatial charge separation, driven by work function differences, enabled electrons and holes to migrate to the respective facets. This configuration tripled photocatalytic hydrogen evolution non-faceted STO:RS(w/o), overcoming the limitations of ultraviolet-only absorption and inefficient charge separation.
View Article and Find Full Text PDF