98%
921
2 minutes
20
Lodging restricts growth, development, and yield formation in maize (Zea mays L.). Shorter internode length is beneficial for lodging tolerance. However, although brassinosteroids (BRs) and jasmonic acid (JA) are known to antagonistically regulate internode growth, the underlying molecular mechanism is still unclear. In this study, application of the JA mimic coronatine (COR) inhibited basal internode elongation at the jointing stage and repressed expression of the cell wall-related gene XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 1 (ZmXTH1), whose overexpression in maize plants promoted internode elongation. We demonstrated that the basic helix-loop-helix (bHLH) transcription factor ZmbHLH154 directly binds to the ZmXTH1 promoter and induces its expression, whereas the bHLH transcription factor ILI1 BINDING BHLH 1 (ZmIBH1) inhibits this transcriptional activation by forming a heterodimer with ZmbHLH154. Overexpressing ZmbHLH154 led to longer internodes, whereas zmbhlh154 mutants had shorter internodes than the wild type. The core JA-dependent transcription factors ZmMYC2-4 and ZmMYC2-6 interacted with BRASSINAZOLE RESISTANT 1 (ZmBZR1), a key factor in BR signaling, and these interactions eliminated the inhibitory effect of ZmBZR1 on its downstream gene ZmIBH1. Collectively, these results reveal a signaling module in which JA regulates a bHLH network by attenuating BR signaling to inhibit ZmXTH1 expression, thereby regulating cell elongation in maize.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/plphys/kiae217 | DOI Listing |
Plant Sci
September 2025
College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China. Electronic address:
Catalpol, one of the major bioactive components in the traditional Chinese medicinal herb Rehmannia glutinosa, exhibits multiple pharmacological activities such as hypoglycemic and neuroprotective effects. Consequently, mechanistic elucidation of catalpol biosynthesis regulation in R. glutinosa is critically important.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China.
Introduction: Transcription factors (TFs) are essential regulators of gene expression, orchestrating plant growth, development, and responses to environmental stress. , a halophytic species renowned for its exceptional salt resistance, provides an ideal model for investigating the regulatory mechanisms underlying salt tolerance.
Methods: Here, we present a comprehensive genome-wide identification and characterization of TFs in .
Front Biosci (Landmark Ed)
August 2025
General Surgery, Shanghai Pudong New District Traditional Chinese Medicine Hospital, 200120 Shanghai, China.
Background: The most common endocrine cancer, thyroid carcinoma (TC), has a dismal prognosis when it reaches an advanced stage. Integrin α-2 () has been implicated in cancer progression, influencing both DNA damage and repair mechanisms. However, it is unknown how ITGA2 influences these processes in TC.
View Article and Find Full Text PDFJ Pineal Res
September 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.
View Article and Find Full Text PDFFungal Biol
October 2025
Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China. Electronic address:
Basic helix-loop-helix (bHLH) transcription factors are essential regulators of various biological processes, including growth, development, and stress responses in eukaryotes. Despite their importance, the specific roles of bHLH factors in entomopathogenic fungi remain inadequately understood. In this study, we identified and characterized the bHLH transcription factor MrbHLH2 in the entomopathogenic fungus Metarhizium robertsii, which is widely used in biological control.
View Article and Find Full Text PDF