98%
921
2 minutes
20
Background: The most common endocrine cancer, thyroid carcinoma (TC), has a dismal prognosis when it reaches an advanced stage. Integrin α-2 () has been implicated in cancer progression, influencing both DNA damage and repair mechanisms. However, it is unknown how ITGA2 influences these processes in TC.
Methods: was identified as a key prognostic gene for TC from the Cancer Genome Atlas-thyroid carcinoma (THCA), GSE3678, GSE29265, and GSE33630 datasets. Functional assays were used to evaluate the impact of knockdown on cell viability, migration, apoptosis, invasion, pyroptosis (N-terminal fragment of GSDME, GSDME-N), and cytotoxicity (Lactate dehydrogenase, LDH). DNA damage markers (phosphorylated histone H2AX on serine 139 (γ-H2AX), phosphorylated ataxia telangiectasia mutated (p-ATM), phosphorylated checkpoint kinase 2 (p-CHK2)) and the level of Reactive Oxygen Species (ROS) were used to assess oxidative stress. The impact of inhibition on Wnt/β-catenin signaling was evaluated, and a mouse xenograft model assessed tumor growth .
Results: was significantly overexpressed in TC. Knockdown of significantly reduced cell viability, migration, and invasion, while promoting pyroptosis by upregulating cleaved-poly(ADP-ribose) polymerase (PARP) and GSDME-N. silencing also increased LDH activity, enhanced the expression of DNA damage markers (p-ATM, γ-H2AX, p-CHK2), and increased ROS levels. Furthermore, suppression of activity attenuated the Wnt/β-catenin pathway by reducing the levels of MYC proto-oncogene, bHLH transcription factor (C-myc), CD44 molecule (CD44), slug, snail, β-catenin, and wingless-type MMTV integration site family, member 1 (Wnt-1). silencing significantly inhibited tumor growth in a mouse model.
Conclusion: promotes TC progression by regulating the DNA damage response and inhibiting pyroptosis. Knockdown of increases oxidative stress, exacerbates DNA damage, and inhibits the Wnt/β-catenin pathway, indicating it may have potential as a treatment target in TC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/FBL27946 | DOI Listing |
Toxicol Sci
September 2025
Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, NJ, USA.
Neutrophils play a complex role in the pathogenesis of chronic liver disease and have been linked to both liver damage and injury resolution. Recent reports propose that neutrophils drive liver injury and fibrosis through the formation of neutrophil extracellular traps (NETs). This study tests the hypothesis that the enzyme peptidyl arginine deiminase-4 (PAD4) drives NET formation and liver fibrosis in experimental chronic liver injury.
View Article and Find Full Text PDFJ Clin Invest
September 2025
Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
Bull Environ Contam Toxicol
September 2025
Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMDP), Dean Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina.
The potential genotoxicity of the fungicide tebuconazole (TBZ) was evaluated in the freshwater fish Jenynsia lineata when exposed to 0.005, 0.05, 0.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India.
Embryonic stem cells (ESCs), which are susceptible to DNA damage, depend on a robust and highly efficient DNA damage response (DDR) mechanism for their survival. However, the implications of physical force-mediated DNA damage on ESC fate remain unclear. We show that stiffness-dependent spreading of mouse ESCs (mESCs) induces DNA damage through nuclear compression, with DNA damage causing differentiation through Lamin A/C.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.
BRCA2 is crucial for mediating homology-directed DNA repair (HDR) through its binding to single-stranded DNA (ssDNA) and the recombinases RAD51 and DMC1. Most BRCA2 orthologs have a canonical DNA-binding domain (DBD) with the exception of Drosophila melanogaster. It remains unclear whether such a noncanonical BRCA2 variant without DBD possesses a DNA-binding activity.
View Article and Find Full Text PDF