Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Laying power cables along the bridge is a new way of laying submarine cables across the sea. Monitoring the health status of cables and their telescopic compensation devices is necessary. In this study, fiber grating sensing technology was used to monitor the strain, temperature, and vibration of the bridge cable of the Zhoushan-Daishan Bridge in Zhoushan, Zhejiang Province, and its compensation device. Two typhoons and one invasion event happened during the monitoring period. Temperature signals, strain signals, and time domain and time-frequency domain vibration signals were analyzed. The results showed that no fire hazards or risk of external damage were found with the bridge cable, and the monitoring system filled a gap in the in situ monitoring of the bridge cable in the Zhoushan-Daishan Bridge by the State Grid.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0194678DOI Listing

Publication Analysis

Top Keywords

bridge cable
16
health status
8
monitoring bridge
8
telescopic compensation
8
compensation device
8
fiber grating
8
grating sensing
8
cable zhoushan-daishan
8
zhoushan-daishan bridge
8
bridge
7

Similar Publications

Structural health monitoring (SHM) is vital for ensuring structural integrity by continuously evaluating conditions through sensor data. However, sensor anomalies caused by external disturbances can severely compromise the effectiveness of SHM systems. Traditional anomaly detection methods face significant challenges due to reliance on large labeled datasets, difficulties in handling long-term dependencies, and issues stemming from class imbalance.

View Article and Find Full Text PDF

Filamentous cable bacteria are capable of centimeter-scale long-distance electron transport and play crucial roles in the biogeochemistry of aquatic sediments. However, the mechanisms underlying long-distance electron transport remain incompletely understood. This study reports dynamic contacts between separate filaments of cable bacteria, enabling them to relay electrons between sulfidic and oxic zones.

View Article and Find Full Text PDF

Development of a capacitance measurement for pulsed magnetic fields.

Rev Sci Instrum

August 2025

National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Capacitance measurements are crucial for probing the electrical properties of materials. In this study, we develop and implement a capacitance measurement technique optimized for pulsed magnetic fields. Our approach employs an auto-balancing bridge method, leveraging a high-bandwidth transimpedance amplifier to mitigate parasitic contributions from coaxial cables.

View Article and Find Full Text PDF

The corrosion of high-strength steel wires is a key factor impacting the durability and reliability of cable-stayed bridges. In this study, the corrosion pit features on a high-strength steel wire, which had been in service for 27 years, were extracted and modeled using three-dimensional point cloud data obtained through 3D surface scanning. The Otsu method was applied for image binarization, and each corrosion pit was geometrically represented as an ellipse.

View Article and Find Full Text PDF

In order to study the mechanical properties of seven-wire steel strands after wire breakage failure, this study is based on the established finite-element beam-element model of seven-wire steel strands and analyzes two failure forms of symmetric wire breakage and asymmetric wire breakage. The stress redistribution pattern, recovery length, and parameter influences (temperature: 0-40 °C; friction coefficient: 0.15-0.

View Article and Find Full Text PDF